Reproductive Medicine Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
The International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Front Immunol. 2024 Oct 31;15:1416297. doi: 10.3389/fimmu.2024.1416297. eCollection 2024.
Preeclampsia (PE) poses significant diagnostic and therapeutic challenges. This study aims to identify novel genes for potential diagnostic and therapeutic targets, illuminating the immune mechanisms involved.
Three GEO datasets were analyzed, merging two for training set, and using the third for external validation. Intersection analysis of differentially expressed genes (DEGs) and WGCNA highlighted candidate genes. These were further refined through LASSO, SVM-RFE, and RF algorithms to identify diagnostic hub genes. Diagnostic efficacy was assessed using ROC curves. A predictive nomogram and fully Connected Neural Network (FCNN) were developed for PE prediction. ssGSEA and correlation analysis were employed to investigate the immune landscape. Further validation was provided by qRT-PCR on human placental samples.
Five biomarkers were identified with validation AUCs: (0.663, 95% CI: 0.577-0.750), (0.850, 95% CI: 0.792-0.908), (0.797, 95% CI: 0.728-0.867), (0.839, 95% CI: 0.775-0.902), and (0.811, 95% CI: 0.742-0.880), all of which are involved in key biological processes. The nomogram showed strong predictive power (C-index 0.873), while FCNN achieved an optimal AUC of 0.911 (95% CI: 0.732-1.000) in five-fold cross-validation. Immune infiltration analysis revealed the importance of T cell subsets, neutrophils, and NK cells in PE, linking these genes to immune mechanisms underlying PE pathogenesis.
, , , , and are validated as key diagnostic biomarkers for PE. Nomogram and FCNN could credibly predict PE. Their association with immune infiltration underscores the crucial role of immune responses in PE pathogenesis.
子痫前期(PE)在诊断和治疗方面都极具挑战性。本研究旨在鉴定新的基因,寻找潜在的诊断和治疗靶点,阐明相关的免疫机制。
分析了三个 GEO 数据集,合并了两个数据集作为训练集,第三个数据集用于外部验证。通过差异表达基因(DEGs)的交集分析和 WGCNA 筛选候选基因。使用 LASSO、SVM-RFE 和 RF 算法进一步筛选,以鉴定诊断的关键基因。使用 ROC 曲线评估诊断的效能。建立预测列线图和全连接神经网络(FCNN)来预测 PE。ssGSEA 和相关性分析用于研究免疫图谱。进一步通过人类胎盘样本的 qRT-PCR 进行验证。
共鉴定出 5 个具有验证 AUC 的生物标志物: (0.663,95% CI:0.577-0.750), (0.850,95% CI:0.792-0.908), (0.797,95% CI:0.728-0.867), (0.839,95% CI:0.775-0.902)和 (0.811,95% CI:0.742-0.880),均参与关键的生物学过程。列线图显示了较强的预测能力(C 指数 0.873),而 FCNN 在五重交叉验证中实现了最佳 AUC 为 0.911(95% CI:0.732-1.000)。免疫浸润分析表明 T 细胞亚群、中性粒细胞和 NK 细胞在 PE 中的重要性,将这些基因与 PE 发病机制中的免疫机制联系起来。
、 、 、 和 被验证为 PE 的关键诊断生物标志物。列线图和 FCNN 可可靠地预测 PE。它们与免疫浸润的关联强调了免疫反应在 PE 发病机制中的关键作用。