文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过加权基因共表达网络分析识别子痫前期相关关键模块和枢纽基因。

Identifying preeclampsia-associated key module and hub genes via weighted gene co-expression network analysis.

作者信息

Li Jie, Jiang Lingling, Kai Haili, Zhou Yang, Cao Jiachen, Tang Weichun

机构信息

Department of Operating Room Nursing Group, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China.

Department of Gynaecology and Obstetrics, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu, China.

出版信息

Sci Rep. 2025 Jan 8;15(1):1364. doi: 10.1038/s41598-025-85599-7.


DOI:10.1038/s41598-025-85599-7
PMID:39779839
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11711461/
Abstract

Preeclampsia (PE) is a common hypertensive disease in women with pregnancy. With the development of bioinformatics, WGCNA was used to explore specific biomarkers to provide therapy targets efficiently. All samples were obtained from gene expression omnibus (GEO), then we used a package named "WGCNA" to construct a scale-free co-expression network and modules related to PE. Next, the search tool for the retrieval of interacting genes database (STRING) was adopted to structure the protein-protein interaction (PPI) of genes in the hub module. Furthermore, the MCODE plug-in was applied to discern hub clusters of the PPI network. We also utilized clusterprofiler to execute the functional analysis. Finally, hub genes were selected via Venn Plot and confirmed by quantitative real-time polymerase chain reaction. Through the co-expression networks and modules, we ensured the turquoise module was the most significant one related to PE. Functional analysis implied these genes were mainly enriched in the organic hydroxy compound metabolic process and Phosphatidylinositol signal system. Due to connectivity, the PPI network showed that GAPDH and VEGFA were the most conspicuous. Lastly, the Venn Plot screened eight hub genes (LDHA, ENG, OCRL, PIK3CB, FLT1, HK2, PKM, and LEP). LDHA was confirmed to be downregulated in PE tissues (P<0.001). This study revealed vital module and hub genes associated with preeclampsia and indicated that LDHA might be a therapeutic target in the future.

摘要

子痫前期(PE)是妊娠期女性常见的高血压疾病。随着生物信息学的发展,加权基因共表达网络分析(WGCNA)被用于探索特定生物标志物,以高效提供治疗靶点。所有样本均取自基因表达综合数据库(GEO),然后我们使用名为“WGCNA”的软件包构建了一个与子痫前期相关的无标度共表达网络和模块。接下来,采用检索相互作用基因数据库(STRING)的搜索工具构建枢纽模块中基因的蛋白质-蛋白质相互作用(PPI)。此外,应用MCODE插件识别PPI网络的枢纽簇。我们还利用clusterProfiler进行功能分析。最后,通过维恩图选择枢纽基因,并通过定量实时聚合酶链反应进行验证。通过共表达网络和模块,我们确定绿松石模块是与子痫前期最相关的模块。功能分析表明,这些基因主要富集于有机羟基化合物代谢过程和磷脂酰肌醇信号系统。基于连通性,PPI网络显示甘油醛-3-磷酸脱氢酶(GAPDH)和血管内皮生长因子A(VEGFA)最为显著。最后,维恩图筛选出8个枢纽基因(乳酸脱氢酶A(LDHA)、内皮糖蛋白(ENG)、肌醇多磷酸-5-磷酸酶L(OCRL)、磷脂酰肌醇-3-激酶催化亚基β(PIK3CB)、血管内皮生长因子受体1(FLT1)、己糖激酶2(HK2)、丙酮酸激酶M2型(PKM)和瘦素(LEP))。LDHA在子痫前期组织中被证实表达下调(P<0.001)。本研究揭示了与子痫前期相关的重要模块和枢纽基因,并表明LDHA可能是未来的一个治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e43/11711461/169a945628e0/41598_2025_85599_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e43/11711461/9bd9caf43b9a/41598_2025_85599_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e43/11711461/87b7ed89b9ed/41598_2025_85599_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e43/11711461/abd89cedafb6/41598_2025_85599_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e43/11711461/25082ff5ca72/41598_2025_85599_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e43/11711461/dfdec4a518e7/41598_2025_85599_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e43/11711461/169a945628e0/41598_2025_85599_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e43/11711461/9bd9caf43b9a/41598_2025_85599_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e43/11711461/87b7ed89b9ed/41598_2025_85599_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e43/11711461/abd89cedafb6/41598_2025_85599_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e43/11711461/25082ff5ca72/41598_2025_85599_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e43/11711461/dfdec4a518e7/41598_2025_85599_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e43/11711461/169a945628e0/41598_2025_85599_Fig6_HTML.jpg

相似文献

[1]
Identifying preeclampsia-associated key module and hub genes via weighted gene co-expression network analysis.

Sci Rep. 2025-1-8

[2]
Exploring gene expression signatures in preeclampsia and identifying hub genes through bioinformatic analysis.

Placenta. 2025-1

[3]
Using weighted gene co-expression network analysis to identify key genes related to preeclampsia.

Front Immunol. 2025-3-26

[4]
Identification of potential crucial genes associated with early-onset preeclampsia via bioinformatic analysis.

Pregnancy Hypertens. 2021-6

[5]
An integrative bioinformatics analysis of microarray data for identifying hub genes as diagnostic biomarkers of preeclampsia.

Biosci Rep. 2019-9-3

[6]
Autophagy-related biomarkers in preeclampsia: the underlying mechanism, correlation to the immune microenvironment and drug screening.

BMC Pregnancy Childbirth. 2024-1-2

[7]
Co-expression network analysis identified atypical chemokine receptor 1 (ACKR1) association with lymph node metastasis and prognosis in cervical cancer.

Cancer Biomark. 2020

[8]
Immune cell infiltration landscape and immune marker molecular typing in preeclampsia.

Bioengineered. 2021-12

[9]
Identification and Immunological Characterization of Cuproptosis Related Genes in Preeclampsia Using Bioinformatics Analysis and Machine Learning.

J Clin Hypertens (Greenwich). 2025-1

[10]
Eleven genes associated with progression and prognosis of endometrial cancer (EC) identified by comprehensive bioinformatics analysis.

Cancer Cell Int. 2019-5-20

引用本文的文献

[1]
Multiple analytical perspectives of mitochondrial genes in the context of preeclampsia: potential diagnostic markers.

Front Immunol. 2025-7-17

[2]
Identification of immune-related genes and molecular subtypes associated with preeclampsia via bioinformatics analysis and experimental validation.

Hereditas. 2025-5-29

本文引用的文献

[1]
Development and validation of preeclampsia predictive models using key genes from bioinformatics and machine learning approaches.

Front Immunol. 2024

[2]
KEGG for taxonomy-based analysis of pathways and genomes.

Nucleic Acids Res. 2023-1-6

[3]
Network-Based Analysis Reveals Novel Biomarkers in Peripheral Blood of Patients With Preeclampsia.

Front Mol Biosci. 2022-6-16

[4]
LDHA Promotes Oral Squamous Cell Carcinoma Progression Through Facilitating Glycolysis and Epithelial-Mesenchymal Transition.

Front Oncol. 2019-12-19

[5]
Association between quality and quantity of dietary carbohydrate and pregnancy-induced hypertension: A case-control study.

Clin Nutr ESPEN. 2019-10

[6]
Toward understanding the origin and evolution of cellular organisms.

Protein Sci. 2019-9-9

[7]
Preeclampsia and Cerebrovascular Disease.

Hypertension. 2019-7

[8]
Gestational Hypertension and Preeclampsia.

MCN Am J Matern Child Nurs. 2019

[9]
Histone deacetylase 6 negatively regulated microRNA-199a-5p induces the occurrence of preeclampsia by targeting VEGFA in vitro.

Biomed Pharmacother. 2019-4-1

[10]
Maternal pregnancy-induced hypertension increases the subsequent risk of neonatal candidiasis: A nationwide population-based cohort study.

Taiwan J Obstet Gynecol. 2019-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索