Suppr超能文献

基于多策略增强蜣螂优化器和反向传播神经网络的PID控制算法用于直流电机控制

PID control algorithm based on multistrategy enhanced dung beetle optimizer and back propagation neural network for DC motor control.

作者信息

Kong Weibin, Zhang Haonan, Yang Xiaofang, Yao Zijian, Wang Rugang, Yang Wenwen, Zhang Jiachen

机构信息

School of Information Engineering, Research Center of Photoelectric and Information Technology, Yancheng Institute of Technology, Yancheng, 224000, Jiangsu, China.

School of Information Science and Technology, Nantong University, Nantong, 226000, Jiangsu, China.

出版信息

Sci Rep. 2024 Nov 16;14(1):28276. doi: 10.1038/s41598-024-79653-z.

Abstract

Traditional Proportional-Integral-Derivative (PID) control systems often encounter challenges related to nonlinearity and time-variability. Original dung beetle optimizer (DBO) offers fast convergence and strong local exploitation capabilities. However, they are limited by poor exploration capabilities, imbalance between exploration and exploitation phases, and insufficient precision in global search. This paper proposes a novel adaptive PID control algorithm based on enhanced dung beetle optimizer (EDBO) and back propagation neural network (BPNN). Firstly, the diversity of exploration is increased by incorporating a merit-oriented mechanism into the rolling behavior. Then, a sine learning factor is introduced to balance the global exploration and local exploitation capabilities. Additionally, a dynamic spiral search strategy and adaptive [Formula: see text]-distribution disturbance are presented to enhance search precision and global search capability. The BPNN is employed to fine-tune both PID and network parameters, leveraging its powerful generalization and learning ability to model nonlinear system dynamics. In the simplified motor experiments, the proposed controller achieved the lowest overshoot (0.5%) and the shortest response time (0.012 s), with a settling time of 0.02 s and a steady-state error of just 0.0010. In another set of experiments, the proposed controller recorded an overshoot and response time of 0.7% and 0.0010 s, across five DC motor tests. These results demonstrate the proposed adaptive PID control algorithm has superior performance in optimizing control system parameters, as well as improving system robustness and stability.

摘要

传统的比例-积分-微分(PID)控制系统经常面临与非线性和时变性相关的挑战。原始蜣螂优化器(DBO)具有快速收敛和强大的局部开发能力。然而,它们受到探索能力差、探索和开发阶段不平衡以及全局搜索精度不足的限制。本文提出了一种基于增强型蜣螂优化器(EDBO)和反向传播神经网络(BPNN)的新型自适应PID控制算法。首先,通过在滚动行为中引入择优机制来增加探索的多样性。然后,引入正弦学习因子来平衡全局探索和局部开发能力。此外,提出了一种动态螺旋搜索策略和自适应[公式:见原文]分布扰动,以提高搜索精度和全局搜索能力。利用BPNN强大的泛化和学习能力对非线性系统动力学进行建模,对PID和网络参数进行微调。在简化的电机实验中,所提出的控制器实现了最低超调量(0.5%)和最短响应时间(0.012 s),调节时间为0.02 s,稳态误差仅为0.0010。在另一组实验中,在所进行的五次直流电机测试中,所提出的控制器记录的超调量和响应时间分别为0.7%和0.0010 s。这些结果表明所提出的自适应PID控制算法在优化控制系统参数以及提高系统鲁棒性和稳定性方面具有卓越性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5364/11569195/06363a8cb2df/41598_2024_79653_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验