Allison S A, Northrup S H, McCammon J A
Biophys J. 1986 Jan;49(1):167-75. doi: 10.1016/S0006-3495(86)83632-3.
Diffusion is a phenomenon of very widespread importance in molecular biophysics. Diffusion can determine the rates and character of the assembly of multisubunit structures, the binding of ligands to receptors, and the internal motions of molecules and assemblies that involve solvent surface displacements. Current computer simulation techniques provide much more detailed descriptions of diffusional processes than have been available in the past. Models can be constructed to include such realistic features as structural subunits at the submolecular level (domains, monomers, or atoms); detailed electrostatic charge distributions and corresponding solvent-screened inter- and intramolecular interactions; and hydrodynamic interactions. The trajectories can be analyzed either to provide direct information on biomolecular function (e.g., the bimolecular rate constant for formation of an electron-transfer complex between two proteins), or to provide or test models for the interpretation of experimental data (e.g., the time dependence of fluorescence depolarization for segments of DNA). Here, we first review the theory of diffusional simulations, with special emphasis on new techniques such as those for obtaining transport properties of flexible assemblies and rate constants of diffusion-controlled reactions. Then we survey a variety of recent applications, including studies of large-scale motion in DNA segments and substrate "steering" in enzyme-substrate binding. We conclude with a discussion of current work (e.g., formation of protein complexes) and possible areas for future work.
扩散是分子生物物理学中一种极为重要且广泛存在的现象。扩散能够决定多亚基结构的组装速率与特性、配体与受体的结合,以及涉及溶剂表面位移的分子和组装体的内部运动。当前的计算机模拟技术对扩散过程的描述比过去更为详尽。可以构建模型来纳入诸如亚分子水平的结构亚基(结构域、单体或原子)等实际特征;详细的静电荷分布以及相应的溶剂屏蔽的分子间和分子内相互作用;还有流体动力学相互作用。轨迹分析既可以提供关于生物分子功能的直接信息(例如,两种蛋白质之间形成电子转移复合物的双分子速率常数),也可以为解释实验数据提供或检验模型(例如,DNA片段荧光去极化的时间依赖性)。在此,我们首先回顾扩散模拟理论,特别强调诸如获取柔性组装体的传输性质和扩散控制反应速率常数等新技术。然后我们综述各种近期的应用,包括对DNA片段大规模运动的研究以及酶 - 底物结合中底物“导向”的研究。我们以对当前工作(例如蛋白质复合物的形成)的讨论以及未来可能的工作领域作为总结。