Suppr超能文献

水凝胶中蛋白质的短期递送调控。

Modulation of Short-Term Delivery of Proteins from Hydrogels.

机构信息

Institute for Macromolecular Chemistry, Hermann-Staudinger-Haus, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany.

BIOSS Centre for Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany.

出版信息

ACS Appl Mater Interfaces. 2024 Nov 27;16(47):64568-64578. doi: 10.1021/acsami.4c15185. Epub 2024 Nov 17.

Abstract

For modulation of cellular behavior, systems that can provide controlled delivery of proteins (soluble signals) over a few hours to a few days are highly desirable. Conventional erosion-controlled systems are inadequate as their degradation spans days to months. Conversely, hydrogels offer quicker release but are limited by a high burst release that can lead to cytotoxicity and rapid depletion of the permeant. To avoid burst release and achieve controlled diffusion of proteins, we propose exploiting electrostatic interactions between the hydrogel matrix and proteins. Here we demonstrate this concept using two disparate hydrogel systems: (1) a chemically cross-linked protein (gelatin) matrix and (2) a physically cross-linked polysaccharide (agarose) matrix and three proteins having different isoelectric points. By introducing fixed charges into the hydrogel matrix using carboxylated agarose (CA), the precise and controlled release of BSA, lactoferrin, and FGF2 over a few hours to days is demonstrated. Using electroendosmosis, we further provide evidence for a clear role for CA in modulating the release. Our findings suggest that the paradigm presented herein has the potential to significantly enhance the design of hydrogel systems for the delivery of proteins and RNA therapeutics for vaccines and biomedical applications ranging from tissue engineering to functional coatings for medical devices.

摘要

为了调节细胞行为,人们非常希望能够在几小时到几天的时间内提供可控的蛋白质(可溶性信号)传递系统。传统的侵蚀控制体系不够理想,因为它们的降解时间跨度从几天到几个月。相反,水凝胶具有更快的释放速度,但受到高突释的限制,这可能导致细胞毒性和渗透物的快速耗尽。为了避免突释并实现蛋白质的控制扩散,我们建议利用水凝胶基质和蛋白质之间的静电相互作用。在这里,我们使用两种不同的水凝胶系统来证明这一概念:(1)化学交联的蛋白质(明胶)基质和(2)物理交联的多糖(琼脂糖)基质和三种具有不同等电点的蛋白质。通过在水凝胶基质中引入带负电荷的羧基化琼脂糖(CA),可以实现 BSA、乳铁蛋白和 FGF2 在几小时到几天内的精确和可控释放。通过电渗流,我们进一步证明了 CA 在调节释放中的明确作用。我们的研究结果表明,本文提出的范例有可能显著增强水凝胶系统的设计,用于蛋白质和 RNA 治疗药物的输送,这些治疗药物可用于从组织工程到医疗设备功能涂层的疫苗和生物医学应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验