Suppr超能文献

行走指纹识别

Walking fingerprinting.

作者信息

Koffman Lily, Crainiceanu Ciprian, Leroux Andrew

机构信息

Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.

Department of Biostatistics & Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.

出版信息

J R Stat Soc Ser C Appl Stat. 2024 Jul 29;73(5):1221-1241. doi: 10.1093/jrsssc/qlae033. eCollection 2024 Nov.

Abstract

We consider the problem of predicting an individual's identity from accelerometry data collected during walking. In a previous paper, we transformed the accelerometry time series into an image by constructing the joint distribution of the acceleration and lagged acceleration for a vector of lags. Predictors derived by partitioning this image into grid cells were used in logistic regression to predict individuals. Here, we (a) implement machine learning methods for prediction using the grid cell-derived predictors; (b) derive inferential methods to screen for the most predictive grid cells while adjusting for correlation and multiple comparisons; and (c) develop a novel multivariate functional regression model that avoids partitioning the predictor space. Prediction methods are compared on two open source acceleometry data sets collected from: (a) 32 individuals walking on a km path; and (b) six repetitions of walking on a 20 m path on two occasions at least 1 week apart for 153 study participants. In the 32-individual study, all methods achieve at least 95% rank-1 accuracy, while in the 153-individual study, accuracy varies from 41% to 98%, depending on the method and prediction task. Methods provide insights into why some individuals are easier to predict than others.

摘要

我们考虑从步行过程中收集的加速度计数据预测个体身份的问题。在之前的一篇论文中,我们通过构建加速度与滞后加速度向量的联合分布,将加速度计时间序列转换为图像。通过将该图像划分为网格单元得出的预测变量被用于逻辑回归以预测个体。在此,我们:(a) 使用从网格单元得出的预测变量实施用于预测的机器学习方法;(b) 推导在调整相关性和多重比较的同时筛选最具预测性的网格单元的推断方法;以及 (c) 开发一种避免划分预测变量空间的新型多元函数回归模型。在从以下方面收集的两个开源加速度计数据集上比较预测方法:(a) 32 名个体在 1 公里路径上行走;以及 (b) 153 名研究参与者在至少相隔 1 周的两个场合在 20 米路径上进行的六次重复行走。在 32 名个体的研究中,所有方法均实现了至少 95% 的排名第一的准确率,而在 153 名个体的研究中,准确率从 41% 到 98% 不等,具体取决于方法和预测任务。这些方法为为何有些个体比其他个体更容易预测提供了见解。

相似文献

1
Walking fingerprinting.行走指纹识别
J R Stat Soc Ser C Appl Stat. 2024 Jul 29;73(5):1221-1241. doi: 10.1093/jrsssc/qlae033. eCollection 2024 Nov.
6
Corticosteroids for the treatment of Duchenne muscular dystrophy.用于治疗杜氏肌营养不良症的皮质类固醇
Cochrane Database Syst Rev. 2016 May 5;2016(5):CD003725. doi: 10.1002/14651858.CD003725.pub4.
9
Tobacco packaging design for reducing tobacco use.用于减少烟草使用的烟草包装设计。
Cochrane Database Syst Rev. 2017 Apr 27;4(4):CD011244. doi: 10.1002/14651858.CD011244.pub2.

本文引用的文献

1
Fingerprinting walking using wrist-worn accelerometers.利用腕戴式加速计进行步态指纹识别。
Gait Posture. 2023 Jun;103:92-98. doi: 10.1016/j.gaitpost.2023.05.001. Epub 2023 May 4.
2
Additive Functional Cox Model.加性函数Cox模型
J Comput Graph Stat. 2021;30(3):780-793. doi: 10.1080/10618600.2020.1853550. Epub 2021 Jan 1.
4
Accelerometry data in health research: challenges and opportunities.健康研究中的加速度计数据:挑战与机遇
Stat Biosci. 2019 Jul;11(2):210-237. doi: 10.1007/s12561-018-9227-2. Epub 2019 Jan 12.
5
Gait and dementia.步态与痴呆
Handb Clin Neurol. 2019;167:419-427. doi: 10.1016/B978-0-12-804766-8.00022-4.
6
Gait impairments in Parkinson's disease.帕金森病的步态障碍。
Lancet Neurol. 2019 Jul;18(7):697-708. doi: 10.1016/S1474-4422(19)30044-4. Epub 2019 Apr 8.
10
Functional Generalized Additive Models.功能广义相加模型
J Comput Graph Stat. 2014;23(1):249-269. doi: 10.1080/10618600.2012.729985.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验