Lococo Filippo, Ghaly Galal, Flamini Sara, Campanella Annalisa, Chiappetta Marco, Bria Emilio, Vita Emanuele, Tortora Giampaolo, Evangelista Jessica, Sassorossi Carolina, Congedo Maria Teresa, Valentini Vincenzo, Sala Evis, Cesario Alfredo, Margaritora Stefano, Boldrini Luca, Mohammed Abdelrahman
Thoracic Surgery Unit, Catholic University of Sacred Heart, Rome, Italy.
Thoracic Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
J Thorac Dis. 2024 Oct 31;16(10):7096-7110. doi: 10.21037/jtd-24-244. Epub 2024 Oct 30.
Lung cancer is still a leading cause of cancer-related deaths worldwide. Vital to ameliorating patient survival rates are early detection, precise evaluation, and personalized treatments. Recent years have witnessed a profound transformation in the field, marked by intricate diagnostic processes and intricate therapeutic protocols that integrate diverse omics domains, heralding a paradigm shift towards personalized and preventive healthcare. This dynamic landscape has embraced the incorporation of advanced machine learning and deep learning techniques, particularly artificial intelligence (AI), into the realm of precision medicine. These groundbreaking innovations create fertile ground for the development of AI-based models adept at extracting valuable insights to inform clinical decisions, with the potential to quantitatively interpret patient data and impact overall patient outcomes significantly. In this comprehensive narrative review, a synthesis of various studies is presented, with a specific focus on three core areas aimed at providing clinicians with a practical understanding of AI-based technologies' potential applications in the diagnosis and management of non-small cell lung cancer (NSCLC). The emphasis is placed on methods for diagnosing malignancy in lung lesions, approaches to predicting histology and other pathological characteristics, and methods for predicting NSCLC gene mutations. The review culminates in a discussion of current trends and future perspectives within the domain of AI-based models, all directed toward enhancing patient care and outcomes in NSCLC. Furthermore, the review underscores the synthesis of diverse studies, accentuating AI applications in NSCLC diagnosis and management. It concludes with a forward-looking discussion on current trends and future perspectives, highlighting the LANTERN Study as a pioneering force set to elevate patient care and outcomes to unprecedented levels.
肺癌仍是全球癌症相关死亡的主要原因。早期检测、精确评估和个性化治疗对于提高患者生存率至关重要。近年来,该领域发生了深刻变革,其特点是复杂的诊断过程和整合多种组学领域的复杂治疗方案,预示着向个性化和预防性医疗保健的范式转变。这一动态格局已将先进的机器学习和深度学习技术,特别是人工智能(AI)纳入精准医学领域。这些开创性的创新为开发基于人工智能的模型创造了肥沃的土壤,这些模型能够提取有价值的见解以指导临床决策,有可能定量解读患者数据并显著影响患者的整体预后。在这篇全面的叙述性综述中,综合了各种研究,特别关注三个核心领域,旨在让临床医生切实了解基于人工智能的技术在非小细胞肺癌(NSCLC)诊断和管理中的潜在应用。重点在于肺病变恶性诊断方法、预测组织学和其他病理特征的方法以及预测NSCLC基因突变的方法。综述最后讨论了基于人工智能的模型领域的当前趋势和未来前景,所有这些都旨在改善NSCLC患者的护理和预后。此外,综述强调了各种研究的综合,突出了人工智能在NSCLC诊断和管理中的应用。它以对当前趋势和未来前景的前瞻性讨论结束,强调“灯笼研究”是一股先锋力量,将把患者护理和预后提升到前所未有的水平。