Lindholm Vivian, Raita-Hakola Anna-Maria, Annala Leevi, Salmivuori Mari, Jeskanen Leila, Saari Heikki, Koskenmies Sari, Pitkänen Sari, Pölönen Ilkka, Isoherranen Kirsi, Ranki Annamari
Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland.
Faculty of Information Technology, University of Jyväskylä, 40100 Jyväskylä, Finland.
J Clin Med. 2022 Mar 30;11(7):1914. doi: 10.3390/jcm11071914.
Several optical imaging techniques have been developed to ease the burden of skin cancer disease on our health care system. Hyperspectral images can be used to identify biological tissues by their diffuse reflected spectra. In this second part of a three-phase pilot study, we used a novel hand-held SICSURFIS Spectral Imager with an adaptable field of view and target-wise selectable wavelength channels to provide detailed spectral and spatial data for lesions on complex surfaces. The hyperspectral images (33 wavelengths, 477-891 nm) provided photometric data through individually controlled illumination modules, enabling convolutional networks to utilise spectral, spatial, and skin-surface models for the analyses. In total, 42 lesions were studied: 7 melanomas, 13 pigmented and 7 intradermal nevi, 10 basal cell carcinomas, and 5 squamous cell carcinomas. All lesions were excised for histological analyses. A pixel-wise analysis provided map-like images and classified pigmented lesions with a sensitivity of 87% and a specificity of 93%, and 79% and 91%, respectively, for non-pigmented lesions. A majority voting analysis, which provided the most probable lesion diagnosis, diagnosed 41 of 42 lesions correctly. This pilot study indicates that our non-invasive hyperspectral imaging system, which involves shape and depth data analysed by convolutional neural networks, is feasible for differentiating between malignant and benign pigmented and non-pigmented skin tumours, even on complex skin surfaces.
为减轻皮肤癌疾病给我们的医疗保健系统带来的负担,已经开发了几种光学成像技术。高光谱图像可通过其漫反射光谱来识别生物组织。在这项分三个阶段的试点研究的第二部分中,我们使用了一种新型手持式SICSURFIS光谱成像仪,它具有可适应的视野和按目标选择的波长通道,可为复杂表面上的病变提供详细的光谱和空间数据。高光谱图像(33个波长,477 - 891纳米)通过单独控制的照明模块提供光度数据,使卷积网络能够利用光谱、空间和皮肤表面模型进行分析。总共研究了42个病变:7个黑色素瘤、13个色素沉着痣和7个皮内痣、10个基底细胞癌和5个鳞状细胞癌。所有病变均被切除以进行组织学分析。逐像素分析提供了类似地图的图像,并对色素沉着病变进行了分类,其对色素沉着病变的敏感性为87%,特异性为93%,对非色素沉着病变的敏感性和特异性分别为79%和91%。多数投票分析提供了最可能的病变诊断,42个病变中有41个被正确诊断。这项试点研究表明,我们的非侵入性高光谱成像系统,通过卷积神经网络分析形状和深度数据,即使在复杂的皮肤表面,也能够区分恶性和良性色素沉着及非色素沉着皮肤肿瘤。