Cai Qiangyu, Lu Jun, Gu Wenting, Xiao Di, Li Boyi, Xu Lei, Gu Yuanjie, Dong Biqin, Liu Xin
Academy for Engineering and Technology, Fudan University, Shanghai 200433, China.
Yiwu Research Institute of Fudan University, Yiwu City, Zhejiang 322000, China.
Biomed Opt Express. 2024 Nov 1;15(11):6638-6653. doi: 10.1364/BOE.537589.
Super-solution fluorescence microscopy, such as single-molecule localization microscopy (SMLM), is effective in observing subcellular structures and achieving excellent enhancement in spatial resolution in contrast to traditional fluorescence microscopy. Recently, deep learning has demonstrated excellent performance in SMLM in solving the trade-offs between spatiotemporal resolution, phototoxicity, and signal intensity. However, most of these researches rely on sufficient and high-quality datasets. Here, we propose a physical priors-based convolutional super-resolution network (PCSR), which incorporates a physical-based loss term and an initial optimization process based on the Wiener filter to create excellent super-resolution images directly using low-resolution images. The experimental results demonstrate that PCSR enables the achievement of a fast reconstruction time of 100 ms and a high spatial resolution of 10 nm by training on a limited dataset, allowing subcellular research with high spatiotemporal resolution, low cell phototoxic illumination, and high accessibility. In addition, the generalizability of PCSR to different live cell structures makes it a practical instrument for diverse cell research.
超分辨荧光显微镜,如单分子定位显微镜(SMLM),与传统荧光显微镜相比,在观察亚细胞结构和实现空间分辨率的卓越提升方面非常有效。最近,深度学习在SMLM中展现出了卓越性能,能够解决时空分辨率、光毒性和信号强度之间的权衡问题。然而,这些研究大多依赖于充足且高质量的数据集。在此,我们提出了一种基于物理先验的卷积超分辨率网络(PCSR),它结合了基于物理的损失项和基于维纳滤波器的初始优化过程,可直接使用低分辨率图像创建出色的超分辨率图像。实验结果表明,通过在有限数据集上进行训练,PCSR能够实现100毫秒的快速重建时间和10纳米的高空间分辨率,从而允许进行具有高时空分辨率、低细胞光毒性照明和高可及性的亚细胞研究。此外,PCSR对不同活细胞结构的通用性使其成为用于各种细胞研究的实用工具。