Metoki Athanasia, Chauvin Roselyne J, Gordon Evan M, Laumann Timothy O, Kay Benjamin P, Krimmel Samuel R, Marek Scott, Wang Anxu, Van Andrew N, Baden Noah J, Suljic Vahdeta, Scheidter Kristen M, Monk Julia, Whiting Forrest I, Ramirez-Perez Nadeshka J, Barch Deanna M, Sotiras Aristeidis, Dosenbach Nico U F
Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA.
Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA.
bioRxiv. 2024 Nov 1:2024.10.31.621379. doi: 10.1101/2024.10.31.621379.
Understanding sex differences in the adolescent brain is crucial, as these differences are linked to neurological and psychiatric conditions that vary between males and females. Predicting sex from adolescent brain data may offer valuable insights into how these variations shape neurodevelopment. Recently, attention has shifted toward exploring socially-identified gender, distinct from sex assigned at birth, recognizing its additional explanatory power. This study evaluates whether resting-state functional connectivity (rsFC) or cortical thickness more effectively predicts sex and sex/gender alignment (the congruence between sex and gender) and investigates their interrelationship in preadolescents. Using data from the Adolescent Brain Cognitive Development (ABCD) Study, we employed machine learning to predict both sex (assigned at birth) and sex/gender alignment from rsFC and cortical thickness. rsFC predicted sex with significantly higher accuracy (86%) than cortical thickness (75%) and combining both did not improve the rsFC model's accuracy. Brain regions most effective in predicting sex belonged to association (default mode, dorsal attention, and parietal memory) and visual (visual and medial visual) networks. The rsFC sex classifier trained on sex/gender aligned youth was significantly more effective in classifying unseen youth with sex/gender alignment than in classifying unseen youth with sex/gender unalignment. In females, the degree to which their brains' rsFC matched a sex profile (female or male), was positively associated with the degree of sex/gender alignment. Lastly, neither rsFC nor cortical thickness predicted sex/gender alignment. These findings highlight rsFC's predictive power in capturing the relationship between sex and gender and the complexity of the interplay between sex, gender, and the brain's functional connectivity and neuroanatomy.
了解青少年大脑中的性别差异至关重要,因为这些差异与男性和女性不同的神经和精神疾病有关。从青少年大脑数据中预测性别可能会为这些差异如何塑造神经发育提供有价值的见解。最近,人们的注意力已转向探索社会认定的性别,它不同于出生时指定的性别,并认识到其额外的解释力。本研究评估静息态功能连接(rsFC)或皮质厚度是否能更有效地预测性别以及性别匹配度(性别与社会认定性别之间的一致性),并研究它们在青春期前儿童中的相互关系。利用青少年大脑认知发展(ABCD)研究的数据,我们采用机器学习从rsFC和皮质厚度预测性别(出生时指定)和性别匹配度。rsFC预测性别的准确率(86%)显著高于皮质厚度(75%),两者结合并未提高rsFC模型的准确率。预测性别最有效的脑区属于联合(默认模式、背侧注意和顶叶记忆)和视觉(视觉和内侧视觉)网络。在性别匹配的青少年中训练的rsFC性别分类器,在对未见过的性别匹配青少年进行分类时,比在对未见过的性别不匹配青少年进行分类时显著更有效。在女性中,其大脑rsFC与性别特征(女性或男性)的匹配程度与性别匹配度呈正相关。最后,rsFC和皮质厚度都不能预测性别匹配度。这些发现突出了rsFC在捕捉性别与社会认定性别之间关系方面的预测能力,以及性别、社会认定性别与大脑功能连接和神经解剖结构之间相互作用的复杂性。