Suppr超能文献

用于非线性模型降阶的物理信息双层神经网络。

Physics-informed two-tier neural network for non-linear model order reduction.

作者信息

Hong Yankun, Bansal Harshit, Veroy Karen

机构信息

Centre for Analysis, Scientific Computing and Applications, Eindhoven University of Technology, Eindhoven, 5600MB The Netherlands.

出版信息

Adv Model Simul Eng Sci. 2024;11(1):20. doi: 10.1186/s40323-024-00273-3. Epub 2024 Nov 14.

Abstract

In recent years, machine learning (ML) has had a great impact in the area of non-intrusive, non-linear model order reduction (MOR). However, the offline training phase often still entails high computational costs since it requires numerous, expensive, full-order solutions as the training data. Furthermore, in state-of-the-art methods, neural networks trained by a small amount of training data cannot be expected to generalize sufficiently well, and the training phase often ignores the underlying physical information when it is applied with MOR. Moreover, state-of-the-art MOR techniques that ensure an efficient online stage, such as hyper reduction techniques, are either intrusive or entail high offline computational costs. To resolve these challenges, inspired by recent developments in physics-informed and physics-reinforced neural networks, we propose a non-intrusive, physics-informed, two-tier deep network (TTDN) method. The proposed network, in which the first tier achieves the regression of the unknown quantity of interest and the second tier rebuilds the physical constitutive law between the unknown quantities of interest and derived quantities, is trained using pretraining and semi-supervised learning strategies. To illustrate the efficiency of the proposed approach, we perform numerical experiments on challenging non-linear and non-affine problems, including multi-scale mechanics problems.

摘要

近年来,机器学习(ML)在非侵入式、非线性模型降阶(MOR)领域产生了重大影响。然而,离线训练阶段通常仍然需要高昂的计算成本,因为它需要大量昂贵的全阶解作为训练数据。此外,在现有方法中,由少量训练数据训练的神经网络无法充分泛化,并且在与MOR结合应用时,训练阶段往往忽略了潜在的物理信息。此外,确保在线阶段高效的现有MOR技术,如超降阶技术,要么具有侵入性,要么需要高昂的离线计算成本。为了解决这些挑战,受物理信息神经网络和物理增强神经网络最新进展的启发,我们提出了一种非侵入式、物理信息两层深度网络(TTDN)方法。所提出的网络,其中第一层实现感兴趣的未知量的回归,第二层重建感兴趣的未知量与导出量之间的物理本构关系,使用预训练和半监督学习策略进行训练。为了说明所提出方法的效率,我们对具有挑战性的非线性和非仿射问题进行了数值实验,包括多尺度力学问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5402/11564392/32ffed5c6733/40323_2024_273_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验