Suppr超能文献

肺部超声预测撤机结局的诊断准确性:一项系统评价和荟萃分析。

Diagnostic accuracy of lung ultrasound to predict weaning outcome: a systematic review and meta-analysis.

作者信息

Zhang Zhiyang, Guo Li, Wang Huawei, Zhang Ze, Shen Limin, Zhao Heling

机构信息

Department of Critical Care Medicine, Hebei Medical University, Shijiazhuang, China.

Department of Intensive Care Unit, Hebei General Hospital, Shijiazhuang, China.

出版信息

Front Med (Lausanne). 2024 Nov 1;11:1486636. doi: 10.3389/fmed.2024.1486636. eCollection 2024.

Abstract

BACKGROUND

This systematic review and meta-analysis aim to systematically assess the diagnostic accuracy of lung ultrasound in predicting weaning failure from mechanical ventilation in critically ill patients.

METHODS

We searched the relevant literature up to January 2024 in the databases Web of Science, Cochrane Library, Embase, and PubMed. Two researchers independently screened eligible studies and extracted data; disagreements, if any, were resolved through discussion or consultation with a third-party expert. The quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. Statistical analyses were performed using Review Manager version 5.3 and Stata version 18.0, applying bivariate random-effects models to estimate sensitivity, specificity, diagnostic odds ratios, and their 95% confidence intervals, as well as to summarize receiver operating characteristic curves. Inter-study heterogeneity was assessed using the I-squared statistic, and potential sources of heterogeneity were explored by meta-regression analysis. The study follows the guidelines for Preferred Reporting Items for Systematic Reviews and Meta-Analyses in reporting.

RESULTS

Fourteen studies were included in the systematic review, of which 13 studies (totaling 988 patients) were included in the meta-analysis. The meta-analysis revealed an overall sensitivity of 0.86 (95% confidence interval: 0.77-0.91) and a specificity of 0.75 (95% confidence interval: 0.66-0.83) for lung ultrasound in predicting extubation failure. The area under the receiver operating characteristic curve was 0.87 (95% confidence interval: 0.84-0.89). Meta-regression analysis identified lung ultrasound thresholds, reference standards (extubation outcomes), and study flow and time bias as significant factors influencing diagnostic accuracy.

CONCLUSION

This systematic review and meta-analysis demonstrated that lung ultrasound has high diagnostic accuracy in predicting extubation failure in mechanically ventilated critically ill patients. Despite some study heterogeneity, lung ultrasound proved to be a reliable predictive tool for extubation failure. Future research should focus on standardizing the definition of extubation failure, exploring the impact of different thresholds on the predictive ability of lung ultrasound, and validating its application in various clinical settings to enhance its utility and accuracy in clinical practice.

SYSTEMATIC REVIEW REGISTRATION

This systematic review and meta-analysis was registered with PROSPERO (registration number: CRD42024555909). The study adhered to the guidelines set by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Details of the PROSPERO protocol can be found in Supplementary Table 1.

摘要

背景

本系统评价和荟萃分析旨在系统评估肺部超声在预测危重症患者机械通气撤机失败方面的诊断准确性。

方法

我们检索了截至2024年1月在Web of Science、Cochrane图书馆、Embase和PubMed数据库中的相关文献。两名研究人员独立筛选符合条件的研究并提取数据;如有分歧,通过讨论或咨询第三方专家解决。使用诊断准确性研究质量评估-2工具评估纳入研究的质量。使用Review Manager 5.3版和Stata 18.0版进行统计分析,应用双变量随机效应模型估计敏感性、特异性、诊断比值比及其95%置信区间,以及汇总受试者工作特征曲线。使用I²统计量评估研究间异质性,并通过荟萃回归分析探索异质性的潜在来源。本研究遵循系统评价和荟萃分析的首选报告项目指南进行报告。

结果

系统评价纳入了14项研究,其中13项研究(共988例患者)纳入了荟萃分析。荟萃分析显示,肺部超声预测拔管失败的总体敏感性为0.86(95%置信区间:0.77-0.91),特异性为0.75(95%置信区间:0.66-0.83)。受试者工作特征曲线下面积为0.87(95%置信区间:0.84-0.89)。荟萃回归分析确定肺部超声阈值、参考标准(拔管结果)以及研究流程和时间偏倚是影响诊断准确性的重要因素。

结论

本系统评价和荟萃分析表明,肺部超声在预测机械通气危重症患者拔管失败方面具有较高的诊断准确性。尽管存在一些研究异质性,但肺部超声被证明是预测拔管失败的可靠工具。未来的研究应侧重于规范拔管失败的定义,探索不同阈值对肺部超声预测能力的影响,并验证其在各种临床环境中的应用,以提高其在临床实践中的实用性和准确性。

系统评价注册

本系统评价和荟萃分析已在PROSPERO注册(注册号:CRD42024555909)。本研究遵循系统评价和荟萃分析的首选报告项目(PRISMA)制定的指南。PROSPERO方案的详细信息见补充表1。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d3/11563988/d68536d6fc19/fmed-11-1486636-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验