Suppr超能文献

用于诊断直径小于1厘米甲状腺结节的深度学习模型:一项多中心回顾性研究。

Deep learning model for diagnosis of thyroid nodules with size less than 1 cm: A multicenter, retrospective study.

作者信息

Feng Na, Zhao Shanshan, Wang Kai, Chen Peizhe, Wang Yunpeng, Gao Yuan, Wang Zhengping, Lu Yidan, Chen Chen, Yao Jincao, Lei Zhikai, Xu Dong

机构信息

Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou 310022, China.

Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China.

出版信息

Eur J Radiol Open. 2024 Oct 31;13:100609. doi: 10.1016/j.ejro.2024.100609. eCollection 2024 Dec.

Abstract

OBJECTIVE

To develop a ultrasound images based dual-channel deep learning model to achieve accurate early diagnosis of thyroid nodules less than 1 cm.

METHODS

A dual-channel deep learning model called thyroid nodule transformer network (TNT-Net) was proposed. The model has two input channels for transverse and longitudinal ultrasound images of thyroid nodules, respectively. A total of 9649 nodules from 8455 patients across five hospitals were retrospectively collected. The data were divided into a training set (8453 nodules, 7369 patients), an internal test set (565 nodules, 512 patients), and an external test set (631 nodules, 574 patients).

RESULTS

TNT-Net achieved an area under the curve (AUC) of 0.953 (95 % confidence interval (CI): 0.934, 0.969) on the internal test set and 0.941 (95 % CI: 0.921, 0.957) on the external test set, significantly outperforming traditional deep convolutional neural network models and single-channel swin transformer model, whose AUCs ranged from 0.800 (95 % CI: 0.759, 0.837) to 0.856 (95 % CI: 0.819, 0.881). Furthermore, feature heatmap visualization showed that TNT-Net could extract richer and more energetic malignant nodule patterns.

CONCLUSION

The proposed TNT-Net model significantly improved the recognition capability for thyroid nodules with size less than 1 cm. This model has the potential to reduce overdiagnosis and overtreatment of such nodules, providing essential support for precise management of thyroid nodules while complementing fine-needle aspiration biopsy.

摘要

目的

开发一种基于超声图像的双通道深度学习模型,以实现对小于1厘米的甲状腺结节的准确早期诊断。

方法

提出了一种名为甲状腺结节变压器网络(TNT-Net)的双通道深度学习模型。该模型分别有两个用于甲状腺结节横向和纵向超声图像的输入通道。回顾性收集了来自五家医院的8455例患者的9649个结节。数据分为训练集(8453个结节,7369例患者)、内部测试集(565个结节,512例患者)和外部测试集(631个结节,574例患者)。

结果

TNT-Net在内部测试集上的曲线下面积(AUC)为0.953(95%置信区间(CI):0.934,0.969),在外部测试集上为0.941(95%CI:0.921,0.957),显著优于传统深度卷积神经网络模型和单通道swin变压器模型,其AUC范围为0.800(95%CI:0.759,0.837)至0.856(95%CI:0.819,0.881)。此外,特征热图可视化显示TNT-Net可以提取更丰富、更有活力的恶性结节模式。

结论

所提出的TNT-Net模型显著提高了对小于1厘米的甲状腺结节的识别能力。该模型有可能减少此类结节的过度诊断和过度治疗,为甲状腺结节的精确管理提供重要支持,同时补充细针穿刺活检。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbe8/11566704/eef6b7e8d7a7/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验