Song Zhenhua, Sun Kexuan, Meng Yuanyuan, Zhu Zewei, Wang Yaohua, Zhang Weifu, Bai Yang, Lu Xiaoyi, Tian Ruijia, Liu Chang, Ge Ziyi
Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
School of Materials Science and Chemical Engineering Ningbo University, Ningbo, 315211, China.
Adv Mater. 2025 Jan;37(3):e2410779. doi: 10.1002/adma.202410779. Epub 2024 Nov 18.
Despite significant progress in the power-conversion efficiency (PCE) of perovskite solar cells (PSCs), the instability of devices remains a considerable obstacle for commercial applications. This instability primarily originates from the migration of halide ions-particularly iodide ions (I). Under light exposure and thermal stress, I migrates and transforms into I, leading to irreversible degradation and performance loss. To address this issue, we introduced the additive 2,1,3-benzothiadiazole,5,6-difluoro-4,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) (BT2F-2B) into the perovskite. The strong coordination between the unhybridized p orbital and lone-pair electrons from I inhibits the deprotonation of MAI/FAI and the subsequent conversion of I to I₂. The highly electronegative fluorine enhances its electrostatic interaction with I. Consequently, the synergistic effect of BT2F-2B effectively suppresses the decomposition of perovskite and the defect density of the iodide vacancies. This approach delivers a PCE over 26% for inverted single-junction PSCs, with exceptional operational stability. According to the ISOS-L-3 testing protocol (maximum power point tracking at 85 °C and 50% relative humidity), treated PSCs retain 85% of their original PCE after 1000 h of aging. When the BT2F-2B is applied to a wide-bandgap (1.77 eV) perovskite system, the PCE of all-perovskite tandem solar cells reaches 27.8%, confirming the universality of the proposed strategy.
尽管钙钛矿太阳能电池(PSC)的功率转换效率(PCE)取得了显著进展,但器件的不稳定性仍然是商业应用的一个重大障碍。这种不稳定性主要源于卤化物离子(特别是碘离子(I⁻))的迁移。在光照和热应力下,I⁻迁移并转化为I₂,导致不可逆的降解和性能损失。为了解决这个问题,我们将添加剂2,1,3-苯并噻二唑,5,6-二氟-4,7-双(4,4,5,5-四甲基-1,3,2-二氧硼戊环-2-基)(BT2F-2B)引入钙钛矿中。未杂化的p轨道与I⁻的孤对电子之间的强配位作用抑制了MAI/FAI的去质子化以及随后I⁻向I₂的转化。高电负性的氟增强了其与I⁻的静电相互作用。因此,BT2F-2B的协同效应有效地抑制了钙钛矿的分解和碘空位的缺陷密度。这种方法为倒置单结PSC提供了超过26%的PCE,具有出色的运行稳定性。根据ISOS-L-3测试协议(在85°C和50%相对湿度下进行最大功率点跟踪),经过处理的PSC在老化1000小时后仍保留其原始PCE的85%。当BT2F-2B应用于宽带隙(1.77 eV)钙钛矿体系时,全钙钛矿串联太阳能电池的PCE达到27.8%,证实了所提出策略的通用性。