Yang Mei, Zhu Weidong, Liang Laijun, Chai Wenming, Wu Xiaomeng, Ren Zeyang, Zhou Long, Chen Dazheng, Xi He, Zhang Chunfu, Zhang Jincheng, Hao Yue
State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology, Xidian University, 710071, Xi'an, People's Republic of China.
School of Electronic Engineering, Xi'an Shiyou University, 710065, Xi'an, People's Republic of China.
Nanomicro Lett. 2025 Sep 1;18(1):53. doi: 10.1007/s40820-025-01851-9.
Ambient-air, moisture-assisted annealing is widely used in fabricating perovskite solar cells (PSCs). However, the inherent sensitivity of perovskite intermediate-phase to moisture-due to fast and spontaneous intermolecular exchange reaction-requires strict control of ambient humidity and immediate thermal annealing treatment, raising manufacturing costs and causing fast nucleation of perovskite films. We report herein a self-buffered molecular migration strategy to slow down the intermolecular exchange reaction by introducing a n-butylammonium bromide shielding layer, which limits moisture diffusion into intermediate-phase film. This further endows the notably wide nucleation time and humidity windows for perovskite crystallization in ambient air. Consequently, the optimized 1.68 eV-bandgap n-i-p structured PSC reaches a record-high reverse-scan (RS) PCE of 22.09%. Furthermore, the versatility and applicability of as-proposed self-buffered molecular migration strategy are certified by employing various shielding materials and 1.53 eV-/1.77 eV-bandgap perovskite materials. The n-i-p structured PSCs based on 1.53 eV- and 1.77 eV-bandgap perovskite films achieve outstanding RS PCEs of 25.23% and 19.09%, respectively, both of which are beyond of the state-of-the-art ambient-air processed PSCs.
环境空气、湿气辅助退火被广泛应用于制造钙钛矿太阳能电池(PSC)。然而,由于快速且自发的分子间交换反应,钙钛矿中间相对湿气具有固有的敏感性,这就需要严格控制环境湿度并立即进行热退火处理,从而提高了制造成本,并导致钙钛矿薄膜快速成核。我们在此报告一种自缓冲分子迁移策略,通过引入溴化正丁铵屏蔽层来减缓分子间交换反应,该屏蔽层可限制湿气扩散到中间相薄膜中。这进一步为钙钛矿在环境空气中结晶赋予了显著更宽的成核时间和湿度窗口。因此,优化后的1.68电子伏特带隙的n-i-p结构PSC的反向扫描(RS)光电转换效率(PCE)达到了创纪录的22.09%。此外,通过使用各种屏蔽材料以及1.53电子伏特/1.77电子伏特带隙的钙钛矿材料,验证了所提出的自缓冲分子迁移策略的通用性和适用性。基于1.53电子伏特和1.77电子伏特带隙钙钛矿薄膜的n-i-p结构PSC分别实现了25.23%和19.09%的出色RS PCE,这两者均超过了目前最先进的环境空气处理PSC。