Suppr超能文献

高维表示中的余数系统计算

Computing With Residue Numbers in High-Dimensional Representation.

作者信息

Kymn Christopher J, Kleyko Denis, Frady E Paxon, Bybee Connor, Kanerva Pentti, Sommer Friedrich T, Olshausen Bruno A

机构信息

Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA 94720, U.S.A.

Centre for Applied Autonomous Sensor Systems, Orebro University, Orebro SE-701 82, Sweden.

出版信息

Neural Comput. 2024 Dec 12;37(1):1-37. doi: 10.1162/neco_a_01723.

Abstract

We introduce residue hyperdimensional computing, a computing framework that unifies residue number systems with an algebra defined over random, high-dimensional vectors. We show how residue numbers can be represented as high-dimensional vectors in a manner that allows algebraic operations to be performed with component-wise, parallelizable operations on the vector elements. The resulting framework, when combined with an efficient method for factorizing high-dimensional vectors, can represent and operate on numerical values over a large dynamic range using resources that scale only logarithmically with the range, a vast improvement over previous methods. It also exhibits impressive robustness to noise. We demonstrate the potential for this framework to solve computationally difficult problems in visual perception and combinatorial optimization, showing improvement over baseline methods. More broadly, the framework provides a possible account for the computational operations of grid cells in the brain, and it suggests new machine learning architectures for representing and manipulating numerical data.

摘要

我们引入了余数超维计算,这是一种将余数系统与基于随机高维向量定义的代数相结合的计算框架。我们展示了余数如何能够以一种允许对向量元素进行逐分量、可并行化操作来执行代数运算的方式表示为高维向量。当与一种用于分解高维向量的有效方法相结合时,由此产生的框架能够使用仅随范围对数增长的资源来表示和处理大动态范围内的数值,这比以前的方法有了巨大改进。它对噪声也表现出令人印象深刻的鲁棒性。我们展示了这个框架在解决视觉感知和组合优化中计算困难问题方面的潜力,相较于基线方法有了改进。更广泛地说,该框架为大脑中网格细胞的计算操作提供了一种可能的解释,并且它为表示和处理数值数据提出了新的机器学习架构。

相似文献

5
6
Efficient Hyperdimensional Computing With Spiking Phasors.基于脉冲相位器的高效超维计算
Neural Comput. 2024 Aug 19;36(9):1886-1911. doi: 10.1162/neco_a_01693.
8
Symbolic Representation and Learning With Hyperdimensional Computing.基于超维计算的符号表示与学习
Front Robot AI. 2020 Jun 9;7:63. doi: 10.3389/frobt.2020.00063. eCollection 2020.
9
An encoding framework for binarized images using hyperdimensional computing.一种使用超维计算的二值化图像编码框架。
Front Big Data. 2024 Jun 14;7:1371518. doi: 10.3389/fdata.2024.1371518. eCollection 2024.

本文引用的文献

3
In-memory factorization of holographic perceptual representations.基于内存的全息感知表示的分解。
Nat Nanotechnol. 2023 May;18(5):479-485. doi: 10.1038/s41565-023-01357-8. Epub 2023 Mar 30.
5
Toroidal topology of population activity in grid cells.网格细胞群体活动的环形拓扑结构。
Nature. 2022 Feb;602(7895):123-128. doi: 10.1038/s41586-021-04268-7. Epub 2022 Jan 12.
6
A Primer on Hyperdimensional Computing for iEEG Seizure Detection.用于颅内脑电图癫痫发作检测的超维计算入门
Front Neurol. 2021 Jul 20;12:701791. doi: 10.3389/fneur.2021.701791. eCollection 2021.
9
Density Encoding Enables Resource-Efficient Randomly Connected Neural Networks.密度编码使资源高效的随机连接神经网络成为可能。
IEEE Trans Neural Netw Learn Syst. 2021 Aug;32(8):3777-3783. doi: 10.1109/TNNLS.2020.3015971. Epub 2021 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验