Hanani Zouhair, Belhadi Jamal, Trstenjak Urška, Shepelin Nick A, Bobnar Vid, Uršič Hana, Daneu Nina, Novak Nikola, Fabijan David, Razumnaya Anna, Tikhonov Yuri, Lippert Thomas, Kutnjak Zdravko, Koster Gertjan, Lukyanchuk Igor, Spreitzer Matjaž
Advanced Materials Department, Jožef Stefan Institute, Jamova Cesta 39, Ljubljana 1000, Slovenia.
Laboratory of Physics of Condensed Mater, University of Picardie Jules Verne, 33 Rue Saint-Leu, Amiens 80039, France.
J Am Chem Soc. 2024 Nov 27;146(47):32595-32604. doi: 10.1021/jacs.4c11555. Epub 2024 Nov 18.
Sm-doped Pb(MgNb)O-PbTiO (Sm-PMN-PT) bulk materials have revealed outstanding ferroelectric and piezoelectric properties due to enhanced local structural heterogeneity. In this study, we further explore the potential of Sm-PMN-PT by fabricating epitaxial thin films by pulsed laser deposition, revealing that Sm doping significantly improves the capacitive energy-storage, piezoelectric, electrocaloric, and pyroelectric properties of PMN-PT thin films. These Sm-PMN-PT thin films exhibit fatigue-free performance up to 10 charge-discharge cycles and maintain thermal stability across a wide temperature range from -40 to 200 °C. Notably, the films demonstrate a colossal electrocaloric effect with a temperature change of 59.4 K and a remarkable pyroelectric energy density reaching 40 J cm. By using scanning transmission electron microscopy and phase-field modeling, we revealed that these exceptional properties arise from the increased local structural heterogeneity and strong local electric fields along spontaneous polarization directions, facilitating the nucleation of polymorphic nanodomains characterized by a slush-like polar structure. These findings highlight the enormous potential of Sm-PMN-PT films in capacitive energy storage and solid-state electrothermal energy interconversion. Furthermore, this approach holds broad potential for other relaxor ferroelectrics by enabling the manipulation of nanodomain structures, paving the way for developing robust multifunctional materials.
掺钐的铅镁铌酸铅-钛酸铅(Sm-PMN-PT)块状材料由于局部结构不均匀性增强而展现出优异的铁电和压电性能。在本研究中,我们通过脉冲激光沉积制备外延薄膜,进一步探索Sm-PMN-PT的潜力,结果表明钐掺杂显著改善了PMN-PT薄膜的电容储能、压电、电卡和热释电性能。这些Sm-PMN-PT薄膜在高达10次充放电循环中表现出无疲劳性能,并在-40至200°C的宽温度范围内保持热稳定性。值得注意的是,这些薄膜表现出巨大的电卡效应,温度变化为59.4 K,热释电能量密度显著达到40 J/cm²。通过使用扫描透射电子显微镜和相场模拟,我们发现这些优异性能源于局部结构不均匀性增加以及沿自发极化方向的强局部电场,促进了具有类似泥浆状极性结构的多晶型纳米畴的成核。这些发现突出了Sm-PMN-PT薄膜在电容储能和固态电热能量转换方面的巨大潜力。此外,这种方法通过能够操纵纳米畴结构,为其他弛豫铁电体具有广泛的潜力,为开发坚固的多功能材料铺平了道路。