Suppr超能文献

从膝骨关节炎患者的滑液中开发支持分子内表型发现的方法学: STEpUPOA 联盟。

Development of methodology to support molecular endotype discovery from synovial fluid of individuals with knee osteoarthritis: The STEpUP OA consortium.

机构信息

Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom.

Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.

出版信息

PLoS One. 2024 Nov 18;19(11):e0309677. doi: 10.1371/journal.pone.0309677. eCollection 2024.

Abstract

OBJECTIVES

To develop a protocol for largescale analysis of synovial fluid proteins, for the identification of biological networks associated with subtypes of osteoarthritis.

METHODS

Synovial Fluid To detect molecular Endotypes by Unbiased Proteomics in Osteoarthritis (STEpUP OA) is an international consortium utilising clinical data (capturing pain, radiographic severity and demographic features) and knee synovial fluid from 17 participating cohorts. 1746 samples from 1650 individuals comprising OA, joint injury, healthy and inflammatory arthritis controls, divided into discovery (n = 1045) and replication (n = 701) datasets, were analysed by SomaScan Discovery Plex V4.1 (>7000 SOMAmers/proteins). An optimised approach to standardisation was developed. Technical confounders and batch-effects were identified and adjusted for. Poorly performing SOMAmers and samples were excluded. Variance in the data was determined by principal component (PC) analysis.

RESULTS

A synovial fluid standardised protocol was optimised that had good reliability (<20% co-efficient of variation for >80% of SOMAmers in pooled samples) and overall good correlation with immunoassay. 1720 samples and >6290 SOMAmers met inclusion criteria. 48% of data variance (PC1) was strongly correlated with individual SOMAmer signal intensities, particularly with low abundance proteins (median correlation coefficient 0.70), and was enriched for nuclear and non-secreted proteins. We concluded that this component was predominantly intracellular proteins, and could be adjusted for using an 'intracellular protein score' (IPS). PC2 (7% variance) was attributable to processing batch and was batch-corrected by ComBat. Lesser effects were attributed to other technical confounders. Data visualisation revealed clustering of injury and OA cases in overlapping but distinguishable areas of high-dimensional proteomic space.

CONCLUSIONS

We have developed a robust method for analysing synovial fluid protein, creating a molecular and clinical dataset of unprecedented scale to explore potential patient subtypes and the molecular pathogenesis of OA. Such methodology underpins the development of new approaches to tackle this disease which remains a huge societal challenge.

摘要

目的

开发一种大规模分析滑液蛋白质的方案,以鉴定与骨关节炎亚型相关的生物网络。

方法

通过关节滑液中未偏倚蛋白质组学来检测骨关节炎的分子内型(STEpUPOA)是一个国际联盟,利用临床数据(捕捉疼痛、放射学严重程度和人口统计学特征)和来自 17 个参与队列的膝关节滑液。1650 名个体的 1746 个样本,包括骨关节炎、关节损伤、健康和炎症性关节炎对照,分为发现(n=1045)和复制(n=701)数据集,通过 SomaScan DiscoveryPlexV4.1(>7000 SOMAmers/蛋白质)进行分析。开发了一种优化的标准化方法。确定并调整了技术混杂因素和批次效应。排除性能不佳的 SOMAmers 和样本。通过主成分(PC)分析确定数据的方差。

结果

优化了一种滑液标准化方案,该方案具有良好的可靠性(>80%的 SOMAmers 在混合样本中的变异系数<20%),并且与免疫测定法总体相关性良好。1720 个样本和>6290 SOMAmers 符合纳入标准。48%的数据方差(PC1)与个体 SOMAmer 信号强度强烈相关,特别是与低丰度蛋白质(中位数相关系数 0.70),富含核蛋白和非分泌蛋白。我们得出结论,该成分主要是细胞内蛋白质,可以通过使用“细胞内蛋白质评分”(IPS)进行调整。PC2(7%的方差)归因于处理批次,并通过 ComBat 进行批次校正。较小的影响归因于其他技术混杂因素。数据可视化显示,损伤和骨关节炎病例在高维蛋白质空间的重叠但可区分区域中聚类。

结论

我们开发了一种分析滑液蛋白质的稳健方法,创建了一个前所未有的分子和临床数据集,以探索潜在的患者亚型和骨关节炎的分子发病机制。这种方法为开发新方法来解决这种仍然是巨大的社会挑战的疾病提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a35d/11573211/5a8489e91776/pone.0309677.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验