Computer Science Department, Brigham Young University-Hawaii, Laie, HI, United States.
Information and Computer Sciences Department, University of Hawaii at Manoa, Honolulu, HI, United States.
J Med Internet Res. 2024 Nov 18;26:e55694. doi: 10.2196/55694.
Machine learning models often use passively recorded sensor data streams as inputs to train machine learning models that predict outcomes captured through ecological momentary assessments (EMA). Despite the growth of mobile data collection, challenges in obtaining proper authorization to send notifications, receive background events, and perform background tasks persist.
We investigated challenges faced by mobile sensing apps in real-world settings in order to develop design guidelines. For active data, we compared 2 prompting strategies: setup prompting, where the app requests authorization during its initial run, and contextual prompting, where authorization is requested when an event or notification occurs. Additionally, we evaluated 2 passive data collection paradigms: collection during scheduled background tasks and persistent reminders that trigger passive data collection. We investigated the following research questions (RQs): (RQ1) how do setup prompting and contextual prompting affect scheduled notification delivery and the response rate of notification-initiated EMA? (RQ2) Which authorization paradigm, setup or contextual prompting, is more successful in leading users to grant authorization to receive background events? and (RQ3) Which polling-based method, persistent reminders or scheduled background tasks, completes more background sessions?
We developed mobile sensing apps for iOS and Android devices and tested them through a 30-day user study asking college students (n=145) about their stress levels. Participants responded to a daily EMA question to test active data collection. The sensing apps collected background location events, polled for passive data with persistent reminders, and scheduled background tasks to test passive data collection.
For RQ1, setup and contextual prompting yielded no significant difference (ANOVA F=0.0227; P=.88) in EMA compliance, with an average of 23.4 (SD 7.36) out of 30 assessments completed. However, qualitative analysis revealed that contextual prompting on iOS devices resulted in inconsistent notification deliveries. For RQ2, contextual prompting for background events was 55.5% (χ=4.4; P=.04) more effective in gaining authorization. For RQ3, users demonstrated resistance to installing the persistent reminder, but when installed, the persistent reminder performed 226.5% more background sessions than traditional background tasks.
We developed design guidelines for improving mobile sensing on consumer mobile devices based on our qualitative and quantitative results. Our qualitative results demonstrated that contextual prompts on iOS devices resulted in inconsistent notification deliveries, unlike setup prompting on Android devices. We therefore recommend using setup prompting for EMA when possible. We found that contextual prompting is more efficient for authorizing background events. We therefore recommend using contextual prompting for passive sensing. Finally, we conclude that developing a persistent reminder and requiring participants to install it provides an additional way to poll for sensor and user data and could improve data collection to support adaptive interventions powered by machine learning.
机器学习模型通常使用被动记录的传感器数据流作为输入,以训练通过生态瞬时评估(EMA)捕获结果的机器学习模型。尽管移动数据收集有所增长,但在获得适当的授权以发送通知、接收后台事件和执行后台任务方面仍然存在挑战。
为了制定设计准则,我们研究了移动感应应用程序在实际环境中面临的挑战。对于主动数据,我们比较了两种提示策略:设置提示,即在应用程序首次运行时请求授权;以及上下文提示,即在发生事件或通知时请求授权。此外,我们评估了两种被动数据收集范式:在计划的后台任务中进行收集和触发被动数据收集的持久提醒。我们调查了以下研究问题(RQ):(RQ1)设置提示和上下文提示如何影响计划通知的传递以及通知启动的 EMA 的响应率?(RQ2)哪种授权范式,设置提示还是上下文提示,更能成功引导用户授予接收后台事件的权限?以及(RQ3)哪种基于轮询的方法,持久提醒还是计划的后台任务,完成更多的后台会话?
我们为 iOS 和 Android 设备开发了移动感应应用程序,并通过一项为期 30 天的用户研究对其进行了测试,该研究要求大学生(n=145)报告他们的压力水平。参与者每天都会回复 EMA 问题,以测试主动数据收集。感应应用程序收集后台位置事件,使用持久提醒轮询被动数据,并安排后台任务以测试被动数据收集。
对于 RQ1,设置和上下文提示在 EMA 合规性方面没有显著差异(ANOVA F=0.0227;P=.88),平均完成了 30 次评估中的 23.4(SD 7.36)次。然而,定性分析表明,iOS 设备上的上下文提示导致通知传递不一致。对于 RQ2,对于后台事件的上下文提示在获得授权方面有效 55.5%(χ=4.4;P=.04)。对于 RQ3,用户对安装持久提醒表现出抵触,但安装后,持久提醒执行的后台会话比传统后台任务多 226.5%。
我们根据定性和定量结果为改善消费者移动设备上的移动感应制定了设计准则。我们的定性结果表明,与 Android 设备上的设置提示不同,iOS 设备上的上下文提示导致通知传递不一致。因此,我们建议在可能的情况下使用 EMA 进行设置提示。我们发现,对于授权后台事件,上下文提示更有效。因此,我们建议对被动感应使用上下文提示。最后,我们得出结论,开发持久提醒并要求参与者安装它提供了一种额外的方式来轮询传感器和用户数据,并可以改善数据收集,以支持由机器学习驱动的自适应干预。