Maniscalco Brian, Charles Lucie, Peters Megan A K
Department of Cognitive Sciences, University of California Irvine, Irvine, CA, 92697, USA.
Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London, WC1N 3AZ, UK.
Psychon Bull Rev. 2025 Jun;32(3):1041-1069. doi: 10.3758/s13423-024-02510-7. Epub 2024 Nov 18.
Signal detection theory (SDT) has long provided the field of psychology with a simple but powerful model of how observers make decisions under uncertainty. SDT can distinguish sensitivity from response bias and characterize optimal decision strategies. Whereas classical SDT pertains to "type 1" judgments about the world, recent work has extended SDT to quantify sensitivity for metacognitive or "type 2" judgments about one's own type 1 processing, e.g. confidence ratings. Here we further advance the application of SDT to the study of metacognition by providing a formal account of normative metacognitive decision strategies - i.e., type 2 (confidence) criterion setting - for ideal observers. Optimality is always defined relative to a given objective. We use SDT to derive formulae for optimal type 2 criteria under four distinct objectives: maximizing type 2 accuracy, maximizing type 2 reward, calibrating confidence to accuracy, and maximizing the difference between type 2 hit rate and false alarm rate. Where applicable, we consider these optimization contexts alongside their type 1 counterparts (e.g. maximizing type 1 accuracy) to deepen understanding. We examine the different strategies implied by these formulae and further consider how optimal type 2 criterion setting differs when metacognitive sensitivity deviates from SDT expectation. The theoretical framework provided here can be used to better understand the metacognitive decision strategies of real observers. Possible applications include characterizing observers' spontaneously chosen metacognitive decision strategies, assessing their ability to fine-tune metacognitive decision strategies to optimize a given outcome when instructed, determining over- or under-confidence relative to an optimal standard, and more. This framework opens new avenues for enriching our understanding of metacognition.
信号检测理论(SDT)长期以来为心理学领域提供了一个简单却强大的模型,用以解释观察者在不确定性下如何做出决策。SDT能够区分敏感性与反应偏差,并刻画最优决策策略。经典的SDT适用于对世界的“第一类”判断,而近期的研究已将SDT扩展,以量化对自身第一类加工的元认知或“第二类”判断(如信心评级)的敏感性。在此,我们通过为理想观察者提供规范性元认知决策策略(即第二类(信心)标准设定)的形式化描述,进一步推进SDT在元认知研究中的应用。最优性总是相对于给定目标来定义的。我们使用SDT推导出在四个不同目标下的最优第二类标准公式:最大化第二类准确性、最大化第二类奖励、使信心与准确性校准,以及最大化第二类命中率与误报率之间的差异。在适用的情况下,我们将这些优化情境与其第一类对应情境(如最大化第一类准确性)一并考虑,以加深理解。我们研究这些公式所隐含的不同策略,并进一步考虑当元认知敏感性偏离SDT预期时,最优第二类标准设定会如何不同。这里提供的理论框架可用于更好地理解真实观察者的元认知决策策略。可能的应用包括刻画观察者自发选择的元认知决策策略、评估他们在接到指令时微调元认知决策策略以优化给定结果的能力、确定相对于最优标准的过度自信或信心不足等。这个框架为丰富我们对元认知的理解开辟了新途径。