Suppr超能文献

迈向用于评判认知模型的“计算合理性”方法:以感知元认知为例的案例研究

Toward 'Computational-Rationality' Approaches to Arbitrating Models of Cognition: A Case Study Using Perceptual Metacognition.

作者信息

Rong Yingqi, Peters Megan A K

机构信息

Department of Mathematics, University of California, Irvine, Irvine, CA, USA.

Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, USA.

出版信息

Open Mind (Camb). 2023 Sep 20;7:652-674. doi: 10.1162/opmi_a_00100. eCollection 2023.

Abstract

Perceptual confidence results from a metacognitive process which evaluates how likely our percepts are to be correct. Many competing models of perceptual metacognition enjoy strong empirical support. Arbitrating these models traditionally proceeds via researchers conducting experiments and then fitting several models to the data collected. However, such a process often includes conditions or paradigms that may not best arbitrate competing models: Many models make similar predictions under typical experimental conditions. Consequently, many experiments are needed, collectively (sub-optimally) sampling the space of conditions to compare models. Here, instead, we introduce a variant of optimal experimental design which we call a approach to generative models of cognition, using perceptual metacognition as a case study. Instead of designing experiments and post-hoc specifying models, we with comprehensive model comparison among four competing generative models for perceptual metacognition, drawn from literature. By simulating a simple experiment under each model, we identified conditions where these models made for confidence. We then presented these conditions to human observers, and compared the models' capacity to predict choices and confidence. Results revealed two surprising findings: (1) two models previously reported to differently predict confidence to different degrees, with one predicting better than the other, appeared to predict confidence in a direction to previous findings; and (2) two other models previously reported to equivalently predict confidence showed stark differences in the conditions tested here. Although preliminary with regards to which model is actually 'correct' for perceptual metacognition, our findings reveal the promise of this approach to maximizing experimental utility in model arbitration while minimizing the number of experiments necessary to reveal the winning model, both for perceptual metacognition and in other domains.

摘要

感知信心源于一种元认知过程,该过程评估我们的感知正确的可能性。许多相互竞争的感知元认知模型都有强有力的实证支持。传统上,对这些模型进行仲裁是通过研究人员进行实验,然后将几个模型与收集到的数据进行拟合。然而,这样的过程通常包括一些可能并非最适合仲裁竞争模型的条件或范式:许多模型在典型的实验条件下会做出相似的预测。因此,需要进行许多实验,共同(次优地)对条件空间进行采样以比较模型。在这里,我们引入了一种最优实验设计的变体,我们称之为认知生成模型的一种方法,以感知元认知为例进行研究。我们不是设计实验并事后指定模型,而是从文献中选取了四个相互竞争的感知元认知生成模型进行全面的模型比较。通过在每个模型下模拟一个简单的实验,我们确定了这些模型对信心做出不同预测的条件。然后,我们将这些条件呈现给人类观察者,并比较了模型预测选择和信心的能力。结果揭示了两个惊人的发现:(1)之前报道的两个模型对信心的预测程度不同,其中一个比另一个预测得更好,但在这里似乎在与之前发现相反的方向上预测信心;(2)之前报道的另外两个对信心预测相当的模型,在这里测试的条件下表现出明显差异。尽管关于哪个模型实际上对于感知元认知是“正确的”还处于初步阶段,但我们的发现揭示了这种方法在模型仲裁中最大化实验效用的前景,同时最小化揭示获胜模型所需的实验数量,无论是对于感知元认知还是其他领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2afb/10575558/b873ccb48613/opmi-07-652-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验