Suppr超能文献

人工智能在突发事件和灾害分诊中的应用:系统评价。

Application of artificial intelligence in triage in emergencies and disasters: a systematic review.

机构信息

Department of Health in Disasters and Emergencies, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, 1983535511, Iran.

Department of Prehospital Medical Emergencies and Health in Disaster and Emergencies, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran.

出版信息

BMC Public Health. 2024 Nov 18;24(1):3203. doi: 10.1186/s12889-024-20447-3.

Abstract

INTRODUCTION AND OBJECTIVE

Modern and intelligent triage systems are used today due to the growing trend of disasters and emergencies worldwide and the increase in the number of injured people facing the challenge of using traditional triage methods. The main objective of this study is to investigate the application of artificial intelligence and Technology in the triage of patients injured by disasters and emergencies and the challenges of the implementation of intelligent triage systems.

METHOD

The present study is a systematic review and follows PRISMA guidelines. The protocol of this study was registered in PROSPERO with the code CRD42023471415. To find relevant studies, the databases PubMed, Scopus and Web of Science (ISI) were searched without a time limit until September 2024. The scientific search engine Google Scholar and the references of the final articles were read manually for the final review.

RESULTS

The search identified 2,630 articles, narrowing down to 19 high-quality studies on AI in triage, which improved patient care through optimized resource management and real-time data transmission. AI algorithms like OpenPose and YOLO enhanced efficiency in mass casualty incidents, while e-triage systems allowed for continuous vital sign monitoring and faster triaging. AI tools demonstrated high accuracy in diagnosing COVID-19 (94.57%). Implementing intelligent triage systems faced challenges such as trust issues, training needs, equipment shortages, and data privacy concerns.

CONCLUSION

Developing assessment systems using artificial intelligence enables timely treatment and better resuscitation services for people injured in disasters. For future studies, we recommend designing intelligent triage systems to remove the obstacles in triaging children and disabled people in disasters.

摘要

引言与目的

由于全球灾害和紧急情况的增长趋势以及面临传统分诊方法挑战的伤员人数增加,现代智能分诊系统得到了广泛应用。本研究的主要目的是探讨人工智能和技术在灾害和紧急情况伤员分诊中的应用,以及智能分诊系统实施面临的挑战。

方法

本研究为系统评价,遵循 PRISMA 指南。本研究方案已在 PROSPERO 中注册,编号为 CRD42023471415。为了找到相关研究,我们无时间限制地在 PubMed、Scopus 和 Web of Science(ISI)数据库中进行了搜索,直到 2024 年 9 月。我们还手动阅读了最终文章的参考文献和科学搜索引擎 Google Scholar,以进行最终审查。

结果

搜索共确定了 2630 篇文章,最后缩小到 19 篇关于分诊中人工智能的高质量研究,这些研究通过优化资源管理和实时数据传输改善了患者护理。OpenPose 和 YOLO 等人工智能算法提高了大规模伤亡事件中的效率,而电子分诊系统则允许对生命体征进行连续监测并加快分诊速度。人工智能工具在诊断 COVID-19 方面表现出了很高的准确率(94.57%)。实施智能分诊系统面临着信任问题、培训需求、设备短缺和数据隐私问题等挑战。

结论

开发使用人工智能的评估系统可以为灾害中受伤的人提供及时的治疗和更好的复苏服务。对于未来的研究,我们建议设计智能分诊系统,以消除在分诊中对儿童和残疾人的障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1791/11575424/b58ec78d9ab5/12889_2024_20447_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验