Suppr超能文献

基于无人机的5G和人工智能在大规模伤亡事件中的智能分诊系统。

Unmanned aerial vehicle based intelligent triage system in mass-casualty incidents using 5G and artificial intelligence.

作者信息

Lu Jiafa, Wang Xin, Chen Linghao, Sun Xuedong, Li Rui, Zhong Wanjing, Fu Yajing, Yang Le, Liu Weixiang, Han Wei

机构信息

Emergency Department of Shenzhen University General Hospital, Shenzhen 518055, China.

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

出版信息

World J Emerg Med. 2023;14(4):273-279. doi: 10.5847/wjem.j.1920-8642.2023.066.

Abstract

BACKGROUND

Rapid on-site triage is critical after mass-casualty incidents (MCIs) and other mass injury events. Unmanned aerial vehicles (UAVs) have been used in MCIs to search and rescue wounded individuals, but they mainly depend on the UAV operator's experience. We used UAVs and artificial intelligence (AI) to provide a new technique for the triage of MCIs and more efficient solutions for emergency rescue.

METHODS

This was a preliminary experimental study. We developed an intelligent triage system based on two AI algorithms, namely OpenPose and YOLO. Volunteers were recruited to simulate the MCI scene and triage, combined with UAV and Fifth Generation (5G) Mobile Communication Technology real-time transmission technique, to achieve triage in the simulated MCI scene.

RESULTS

Seven postures were designed and recognized to achieve brief but meaningful triage in MCIs. Eight volunteers participated in the MCI simulation scenario. The results of simulation scenarios showed that the proposed method was feasible in tasks of triage for MCIs.

CONCLUSION

The proposed technique may provide an alternative technique for the triage of MCIs and is an innovative method in emergency rescue.

摘要

背景

在大规模伤亡事件(MCI)和其他大规模伤害事件发生后,快速现场分诊至关重要。无人驾驶飞行器(UAV)已被用于MCI中搜索和救援受伤人员,但它们主要依赖于无人机操作员的经验。我们使用无人机和人工智能(AI)为MCI的分诊提供一种新技术,并为紧急救援提供更有效的解决方案。

方法

这是一项初步实验研究。我们基于两种AI算法,即OpenPose和YOLO,开发了一种智能分诊系统。招募志愿者模拟MCI场景并进行分诊,结合无人机和第五代(5G)移动通信技术实时传输技术,以在模拟的MCI场景中实现分诊。

结果

设计并识别了七种姿势,以在MCI中实现简短但有意义的分诊。八名志愿者参与了MCI模拟场景。模拟场景结果表明,所提出的方法在MCI分诊任务中是可行的。

结论

所提出的技术可能为MCI的分诊提供一种替代技术,并且是紧急救援中的一种创新方法。

相似文献

3
Remote Scene Size-up Using an Unmanned Aerial Vehicle in a Simulated Mass Casualty Incident.
Prehosp Emerg Care. 2019 May-Jun;23(3):332-339. doi: 10.1080/10903127.2018.1511765. Epub 2018 Sep 20.
4
Prehospital Response Time of the Emergency Medical Service during Mass Casualty Incidents and the Effect of Triage: A Retrospective Study.
Disaster Med Public Health Prep. 2022 Jun;16(3):1091-1098. doi: 10.1017/dmp.2021.40. Epub 2021 Apr 12.
5
Comparison of Unmanned Aerial Vehicle Technology versus Standard Practice of Scene Assessment by Paramedic Students of a Mass-Gathering Event.
Prehosp Disaster Med. 2021 Dec;36(6):756-761. doi: 10.1017/S1049023X2100114X. Epub 2021 Oct 27.
6
First Responder Accuracy Using SALT during Mass-casualty Incident Simulation.
Prehosp Disaster Med. 2016 Apr;31(2):150-4. doi: 10.1017/S1049023X16000091. Epub 2016 Feb 9.
7
Factors affecting the accuracy of prehospital triage application and prehospital scene time in simulated mass casualty incidents.
Scand J Trauma Resusc Emerg Med. 2024 Sep 26;32(1):97. doi: 10.1186/s13049-024-01257-3.
8
Research of an emergency medical system for mass casualty incidents in Shanghai, China: a system dynamics model.
Patient Prefer Adherence. 2018 Jan 31;12:207-222. doi: 10.2147/PPA.S155603. eCollection 2018.
9
Comparison of Electronic Versus Manual Mass-Casualty Incident Triage.
Prehosp Disaster Med. 2018 Jun;33(3):273-278. doi: 10.1017/S1049023X1800033X. Epub 2018 Apr 17.
10
Combining Unmanned Aerial Vehicles, and Internet Protocol Cameras to Reconstruct 3-D Disaster Scenes During Rescue Operations.
Prehosp Emerg Care. 2019 Jul-Aug;23(4):479-484. doi: 10.1080/10903127.2018.1528323. Epub 2018 Nov 8.

引用本文的文献

1
Application of artificial intelligence in triage in emergencies and disasters: a systematic review.
BMC Public Health. 2024 Nov 18;24(1):3203. doi: 10.1186/s12889-024-20447-3.
2
Use of artificial intelligence to support prehospital traumatic injury care: A scoping review.
J Am Coll Emerg Physicians Open. 2024 Sep 4;5(5):e13251. doi: 10.1002/emp2.13251. eCollection 2024 Oct.
3
Glycerophosphoinositol modulates FGA and NOTCH3 in exercise-induced muscle adaptation and colon cancer progression.
Front Pharmacol. 2024 Jul 26;15:1430400. doi: 10.3389/fphar.2024.1430400. eCollection 2024.
4
Emergency medical services preparedness in mass casualty incidents: A qualitative study.
Health Sci Rep. 2023 Oct 19;6(10):e1629. doi: 10.1002/hsr2.1629. eCollection 2023 Oct.

本文引用的文献

1
A systematic analysis of worldwide disasters, epidemics and pandemics associated mortality of 210 countries for 15 years (2001-2015).
Int J Disaster Risk Reduct. 2022 Jun 15;76:103001. doi: 10.1016/j.ijdrr.2022.103001. Epub 2022 May 4.
2
Prehospital triage tools across the world: a scoping review of the published literature.
Scand J Trauma Resusc Emerg Med. 2022 Apr 27;30(1):32. doi: 10.1186/s13049-022-01019-z.
4
Impact of Using Drones in Emergency Medicine: What Does the Future Hold?
Open Access Emerg Med. 2021 Nov 16;13:487-498. doi: 10.2147/OAEM.S247020. eCollection 2021.
7
Development of a Light-Weight Unmanned Aerial Vehicle for Precision Agriculture.
Sensors (Basel). 2021 Jun 28;21(13):4417. doi: 10.3390/s21134417.
8
Development of the Aerial Remote Triage System using drones in mass casualty scenarios: A survey of international experts.
PLoS One. 2021 May 11;16(5):e0242947. doi: 10.1371/journal.pone.0242947. eCollection 2021.
9
Real-Time Human Detection and Gesture Recognition for On-Board UAV Rescue.
Sensors (Basel). 2021 Mar 20;21(6):2180. doi: 10.3390/s21062180.
10
Leveraging Unmanned Aerial Vehicle Technology to Improve Public Health Practice: Prospects and Barriers.
Indian J Community Med. 2020 Oct-Dec;45(4):396-398. doi: 10.4103/ijcm.IJCM_402_19. Epub 2020 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验