Long Qian, Jiang Geyuan, Zhou Jianfei, Zhao Dawei, Yu Haipeng
Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, China.
College of Biomass Science and Engineering, Sichuan University, Chengdu, China.
Research (Wash D C). 2024 Nov 18;7:0533. doi: 10.34133/research.0533. eCollection 2024.
Achieving rubber-like stretchability in cellulose ionogels presents a substantial challenge due to the intrinsically extended chain configuration of cellulose. Inspired by the molecular configuration of natural rubber, we address this challenge by using cyanoethyl as a substitute for 1.5 hydroxyl on the D-glucose unit of cellulose. This strategy innovatively triggers the transformation of cellulose molecules into a coiled chain configuration, facilitating the creation of an ultra-stretchable ionogel free from any petrochemical polymers. The resultant ionogel demonstrates mechanical ductility comparable to that of a rubber band, achieving an elongation strain of nearly 1,000% while maintaining a tensile strength of up to 1.8 MPa and exhibiting a biomodulus akin to that of human skin, recorded at 63 kPa. Additionally, this stretchable ionogel presents skin-like self-healing behavior, favorable biocompatibility, and noteworthy thermoelectric properties, highlighted by a Seebeck coefficient of approximately 68 mV K. This study delineates a feasible molecular approach for developing stretchable ionogels from biomass resources, potentially revolutionizing self-powered stretchable electronics for integration with human tissues and skin.
由于纤维素固有的伸展链构型,在纤维素离子凝胶中实现橡胶般的拉伸性面临重大挑战。受天然橡胶分子构型的启发,我们通过使用氰乙基替代纤维素D - 葡萄糖单元上的1.5个羟基来应对这一挑战。这一策略创新性地促使纤维素分子转变为卷曲链构型,有助于制备出不含任何石化聚合物的超拉伸离子凝胶。所得离子凝胶表现出与橡皮筋相当的机械延展性,实现了近1000%的伸长应变,同时保持高达1.8 MPa的拉伸强度,并展现出类似于人类皮肤的生物模量,记录值为63 kPa。此外,这种可拉伸离子凝胶具有类似皮肤的自愈行为、良好的生物相容性以及显著的热电性能,塞贝克系数约为68 mV K。本研究描述了一种从生物质资源开发可拉伸离子凝胶的可行分子方法,有望彻底改变用于与人体组织和皮肤集成的自供电可拉伸电子器件。