Suppr超能文献

基于多任务和 landmark 检测的深度学习框架在 MRI Couinaud 分段中的应用。

A Multi-Task Based Deep Learning Framework With Landmark Detection for MRI Couinaud Segmentation.

机构信息

Chengdu Institute of Computer Application, Chinese Academy of Sciences Beijing 100045 China.

School of Computer Science and TechnologyUniversity of Chinese Academy of Sciences Beijing 101408 China.

出版信息

IEEE J Transl Eng Health Med. 2024 Nov 4;12:697-710. doi: 10.1109/JTEHM.2024.3491612. eCollection 2024.

Abstract

To achieve precise Couinaud liver segmentation in preoperative planning for hepatic surgery, accommodating the complex anatomy and significant variations, optimizing surgical approaches, reducing postoperative complications, and preserving liver function.This research presents a novel approach to automating liver segmentation by identifying seven key anatomical landmarks using portal venous phase images from contrast-enhanced magnetic resonance imaging (CE-MRI). By employing a multi-task learning framework, we synchronized the detection of these landmarks with the segmentation process, resulting in accurate and robust delineation of the Couinaud segments.To comprehensively validate our model, we included multiple patient types in our test set-those with normal livers, diffuse liver diseases, and localized liver lesions-under varied imaging conditions, including two field strengths, two devices, and two contrast agents. Our model achieved an average Dice Similarity Coefficient (DSC) of 85.29%, surpassing the next best-performing models by 3.12%.Our research presents a pioneering automated approach for segmenting Couinaud segments using CE-MRI. By correlating landmark detection with segmentation, we enhance surgical planning precision. This method promises improved clinical outcomes by accurately adapting to anatomical variability and reducing potential postoperative complications.Clinical impact: The application of this technique in clinical settings is poised to enhance the precision of liver surgical planning. This could lead to more tailored surgical interventions, minimization of operative risks, and preservation of healthy liver tissue, culminating in improved patient outcomes and potentially lowering the incidence of postoperative complications.Clinical and Translational Impact Statement: This research offers a novel automated liver segmentation technique, enhancing preoperative planning and potentially reducing complications, which may translate into better postoperative outcomes in hepatic surgery.

摘要

为了实现肝外科术前规划中精准的 Couinaud 肝脏分段,适应复杂的解剖结构和显著的变异性,优化手术方法,减少术后并发症,并保护肝功能。本研究提出了一种新的方法,通过使用对比增强磁共振成像(CE-MRI)的门静脉期图像识别七个关键解剖标志来自动进行肝脏分段。通过采用多任务学习框架,我们同步检测这些标志与分割过程,实现了 Couinaud 段的准确和稳健描绘。为了全面验证我们的模型,我们在测试集中包括了多种患者类型,包括正常肝脏、弥漫性肝病和局限性肝病变,在不同的成像条件下,包括两种场强、两种设备和两种对比剂。我们的模型平均达到了 85.29%的 Dice 相似系数(DSC),比下一个表现最好的模型高出 3.12%。本研究提出了一种使用 CE-MRI 自动分段 Couinaud 段的开创性方法。通过将标志检测与分割相关联,我们提高了手术规划的精度。这种方法通过准确适应解剖结构的变异性和减少潜在的术后并发症,有望改善临床结果。临床影响:这项技术在临床环境中的应用有望提高肝外科手术规划的精度。这可能导致更具针对性的手术干预、最小化手术风险和保护健康的肝组织,最终改善患者的结果,并可能降低术后并发症的发生率。临床和转化影响声明:这项研究提供了一种新的自动肝脏分段技术,增强了术前规划,并可能减少并发症,这可能会转化为肝外科术后更好的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ecb/11573409/0f729be7f76e/ailia1-3491612.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验