Neuroscience Institute, Georgia State University, Petit Science Center, Atlanta, GA, USA.
Adv Neurobiol. 2024;40:157-188. doi: 10.1007/978-3-031-69491-2_7.
Methods for studying the mammalian brain in vivo have advanced dramatically in the past two decades. State-of-the-art optical and electrophysiological techniques allow direct recordings of the functional dynamics of thousands of neurons across distributed brain circuits with single-cell resolution. With transgenic tools, specific neuron types, pathways, and/or neurotransmitters can be targeted in user-determined brain areas for precise measurement and manipulation. In this chapter, we catalog these advancements. We emphasize that the impact of this methodological revolution on neuropsychiatry remains uncertain. This stems from the fact that these tools remain mostly limited to research in mice. And while translational paradigms are needed, recapitulations of human psychiatric disease states (e.g., schizophrenia) in animal models are inherently challenging to validate and may have limited utility in heterogeneous disease populations. Here we focus on an alternative strategy aimed at the study of neurophysiological biomarkers-the subject of this volume-translated to animal models, where precision neuroscience tools can be applied to provide molecular, cellular, and circuit-level insights and novel therapeutic targets. We summarize several examples of this approach throughout the chapter and emphasize the importance of careful experimental design and choice of dependent measures.
在过去的二十年中,研究哺乳动物大脑的活体方法取得了巨大的进展。最先进的光学和电生理技术允许以单细胞分辨率直接记录分布在大脑回路中的数千个神经元的功能动态。借助转基因工具,可以在用户确定的大脑区域中靶向特定的神经元类型、途径和/或神经递质,以进行精确的测量和操作。在本章中,我们对这些进展进行了分类。我们强调,这种方法学革命对神经精神疾病的影响仍不确定。这源于这样一个事实,即这些工具主要局限于在小鼠中的研究。尽管需要转化范式,但在动物模型中重现人类精神疾病状态(例如精神分裂症)具有挑战性,难以验证,并且在异质疾病人群中可能具有有限的实用性。在这里,我们专注于另一种策略,旨在研究神经生理学生物标志物——这是本卷的主题——转化为动物模型,在动物模型中可以应用精确的神经科学工具来提供分子、细胞和回路水平的见解和新的治疗靶点。我们在本章中总结了几个这样的例子,并强调了精心设计实验和选择依赖措施的重要性。