Lin Yuanfang, Wang Ying, Weng Zongling, Zhou Yang, Liu Siqi, Ou Xinwen, Xu Xing, Cai Yanpeng, Jiang Jin, Han Bin, Yang Zhifeng
Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, P.R. China.
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.
Nat Commun. 2024 Nov 19;15(1):10032. doi: 10.1038/s41467-024-54225-x.
Coordination engineering of high-valent Fe(IV)-oxo (Fe=O) is expected to break the activity-selectivity trade-off of traditional reactive oxygen species, while attempts to regulate the oxidation behaviors of heterogeneous Fe=O remain unexplored. Here, by coordination engineering of Fe-N single-atom catalysts (Fe-N SACs), we propose a feasible approach to regulate the oxidation behaviors of heterogeneous Fe=O. The developed Fe-N SACs/peroxymonosulfate (PMS) system delivers boosted performance for Fe=O generation, and thereby can selectively remove a range of pollutants within tens of seconds. In-situ spectra and theoretical simulations suggest that low-coordination Fe-N SACs favor the generation of Fe=O via PMS activation as providing more electrons to facilitate the desorption of the key SOH intermediate. Due to their disparate attacking sites to sulfamethoxazole (SMX) molecules, Fe-N SACs mediated Fe=O (FeN=O) oxidize SMX to small molecules with less toxicity, while FeN=O produces series of more toxic azo compounds through N-N coupling with more complex oxidation pathways.
高价铁(IV)-氧(Fe=O)的配位工程有望打破传统活性氧物种的活性-选择性权衡,而异相Fe=O氧化行为的调控尝试仍未得到探索。在此,通过铁-氮单原子催化剂(Fe-N SACs)的配位工程,我们提出了一种调控异相Fe=O氧化行为的可行方法。所开发的Fe-N SACs/过一硫酸盐(PMS)体系在生成Fe=O方面具有增强的性能,从而能够在数十秒内选择性去除一系列污染物。原位光谱和理论模拟表明,低配位的Fe-N SACs有利于通过PMS活化生成Fe=O,因为它能提供更多电子以促进关键SOH中间体的解吸。由于它们对磺胺甲恶唑(SMX)分子的攻击位点不同,Fe-N SACs介导的Fe=O(FeN=O)将SMX氧化为毒性较小的小分子,而FeN=O通过更复杂的氧化途径与N-N偶联产生一系列毒性更大的偶氮化合物。