Department of Physics and Astronomy, Ohio University, Athens, OH, 45701, USA.
Neuroscience Program, Ohio University, Athens, OH, 45701, USA.
Sci Rep. 2022 Sep 2;12(1):15003. doi: 10.1038/s41598-022-19417-9.
We study the dynamics of Kuramoto oscillator networks with two distinct adaptation processes, one varying the coupling strengths and the other altering the network structure. Such systems model certain networks of oscillatory neurons where the neuronal dynamics, synaptic weights, and network structure interact with and shape each other. We model synaptic weight adaptation with spike-timing-dependent plasticity (STDP) that runs on a longer time scale than neuronal spiking. Structural changes that include addition and elimination of contacts occur at yet a longer time scale than the weight adaptations. First, we study the steady-state dynamics of Kuramoto networks that are bistable and can settle in synchronized or desynchronized states. To compare the impact of adding structural plasticity, we contrast the network with only STDP to one with a combination of STDP and structural plasticity. We show that the inclusion of structural plasticity optimizes the synchronized state of a network by allowing for synchronization with fewer links than a network with STDP alone. With non-identical units in the network, the addition of structural plasticity leads to the emergence of correlations between the oscillators' natural frequencies and node degrees. In the desynchronized regime, the structural plasticity decreases the number of contacts, leading to a sparse network. In this way, adding structural plasticity strengthens both synchronized and desynchronized states of a network. Second, we use desynchronizing coordinated reset stimulation and synchronizing periodic stimulation to induce desynchronized and synchronized states, respectively. Our findings indicate that a network with a combination of STDP and structural plasticity may require stronger and longer stimulation to switch between the states than a network with STDP only.
我们研究了具有两种不同适应过程的 Kuramoto 振荡器网络的动力学,一种过程改变耦合强度,另一种过程改变网络结构。这种系统模型是某些振荡神经元网络的模型,其中神经元动力学、突触权重和网络结构相互作用并塑造彼此。我们使用尖峰时间依赖性可塑性(STDP)来模拟突触权重适应,这种可塑性的时间尺度比神经元尖峰时间长。包括添加和消除接触的结构变化发生在比权重适应更长的时间尺度上。首先,我们研究了 Kuramoto 网络的稳态动力学,这些网络是双稳态的,可以在同步或去同步状态下稳定。为了比较添加结构可塑性的影响,我们将仅具有 STDP 的网络与具有 STDP 和结构可塑性组合的网络进行了对比。我们表明,结构可塑性的包含通过允许与更少的链接同步来优化网络的同步状态,而不仅仅是具有 STDP 的网络。在网络中具有不同的单元时,添加结构可塑性会导致振荡器自然频率和节点度之间出现相关性。在去同步状态下,结构可塑性会减少接触的数量,导致网络稀疏。通过这种方式,添加结构可塑性可以增强网络的同步和去同步状态。其次,我们使用去同步协调重置刺激和同步周期性刺激分别诱导去同步和同步状态。我们的发现表明,具有 STDP 和结构可塑性组合的网络可能需要比仅具有 STDP 的网络更强和更长的刺激才能在状态之间切换。