Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA.
Department of Radiology, Columbia University New York, New York, NY, 10032, USA.
Sci Data. 2024 Nov 20;11(1):1259. doi: 10.1038/s41597-024-04085-3.
Quantitative imaging biomarkers (QIB) are increasingly used in clinical research to advance precision medicine approaches in oncology. Computed tomography (CT) is a modality of choice for cancer diagnosis, prognosis, and response assessment due to its reliability and global accessibility. Here, we contribute to the cancer imaging community through The Cancer Imaging Archive (TCIA) by providing investigator-initiated, same-day repeat CT scan images of 32 non-small cell lung cancer (NSCLC) patients, along with radiologist-annotated lesion contours as a reference standard. Each scan was reconstructed into 6 image settings using various combinations of three slice thicknesses (1.25 mm, 2.5 mm, 5 mm) and two reconstruction kernels (lung, standard; GE CT equipment), which spans a wide range of CT imaging reconstruction parameters commonly used in lung cancer clinical practice and clinical trials. This holds considerable value for advancing the development of robust Radiomics, Artificial Intelligence (AI) and machine learning (ML) methods.
定量成像生物标志物 (QIB) 在临床研究中越来越多地被用于推进肿瘤学中的精准医学方法。由于其可靠性和全球可及性,计算机断层扫描 (CT) 是癌症诊断、预后和反应评估的首选方式。在这里,我们通过癌症成像档案 (TCIA) 为癌症成像社区做出了贡献,提供了 32 名非小细胞肺癌 (NSCLC) 患者的研究者发起的、同日重复 CT 扫描图像,以及放射科医生注释的病变轮廓作为参考标准。每个扫描都使用三种切片厚度(1.25mm、2.5mm、5mm)和两种重建核(肺、标准;GE CT 设备)的各种组合重建为 6 种图像设置,这涵盖了肺癌临床实践和临床试验中常用的广泛 CT 成像重建参数。这对于推进强大的放射组学、人工智能 (AI) 和机器学习 (ML) 方法的发展具有重要价值。