Khan Omor M, Gasperini Will, Necessary Chess, Jacobs Zach, Perry Sam, Rexroat Jason, Nelson Kendall, Gamble Paul, Clements Twyman, DeLeon Maximilien, Howard Sean, Zavala Anamaria, Farach-Carson Mary, Blaber Elizabeth, Wu Danielle, Satici Aykut, Uzer Gunes
Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, 83725, USA.
Space Tango Inc, 611 Winchester, Lexington, KY, 40505, USA.
NPJ Microgravity. 2024 Nov 20;10(1):107. doi: 10.1038/s41526-024-00444-x.
Extended-duration human spaceflight necessitates a better understanding of the physiological impacts of microgravity. While the ground-based microgravity simulations identified low intensity vibration (LIV) as a possible countermeasure, how cells may respond to LIV under real microgravity remain unexplored. In this way, adaptation of LIV bioreactors for space remains limited, resulting in a significant gap in microgravity research. In this study, we introduce an LIV bioreactor designed specifically for the usage in the International Space Station. Our research covers the bioreactor's design process and evaluation of the short-term viability of cells encapsulated in hydrogel-laden 3D printed scaffolds under 0.7 g, 90 Hz LIV. An LIV bioreactor compatible with the operation requirements of space missions provides a robust platform to study cellular effects of LIV under real microgravity conditions.
长期载人航天需要更好地了解微重力的生理影响。虽然地面微重力模拟确定低强度振动(LIV)可能是一种对策,但在实际微重力条件下细胞对LIV的反应仍未得到探索。因此,适用于太空的LIV生物反应器仍然有限,导致微重力研究存在重大差距。在本研究中,我们介绍了一种专门为国际空间站使用而设计的LIV生物反应器。我们的研究涵盖了生物反应器的设计过程,以及对包裹在充满水凝胶的3D打印支架中的细胞在0.7g、90Hz LIV条件下的短期活力评估。一种与太空任务操作要求兼容的LIV生物反应器为研究实际微重力条件下LIV的细胞效应提供了一个强大的平台。