Systems Biology and Genome Engineering Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, NIH, Bethesda, MD.
Proc Natl Acad Sci U S A. 2024 Nov 26;121(48):e2413743121. doi: 10.1073/pnas.2413743121. Epub 2024 Nov 21.
Delineating a protein's essential and dispensable domains provides critical insight into how it carries out its function. Here, we developed a high-throughput method to synthesize and test the functionality of all possible in-frame and continuous deletions in a gene of interest, enabling rapid and unbiased determination of protein domain importance. Our approach generates precise deletions using a CRISPR library framework that is free from constraints of gRNA target site availability and efficacy. We applied our method to AcrIIA4, a phage-encoded anti-CRISPR protein that robustly inhibits SpCas9. Extensive structural characterization has shown that AcrIIA4 physically occupies the DNA-binding interfaces of several SpCas9 domains; nonetheless, the importance of each AcrIIA4 interaction for SpCas9 inhibition is unknown. We used our approach to determine the essential and dispensable regions of AcrIIA4. Surprisingly, not all contacts with SpCas9 were required, and in particular, we found that the AcrIIA4 loop that inserts into SpCas9's RuvC catalytic domain can be deleted. Our results show that AcrIIA4 inhibits SpCas9 primarily by blocking PAM binding and that its interaction with the SpCas9 catalytic domain is inessential.
阐明蛋白质的必需和非必需结构域为深入了解其功能提供了关键的见解。在这里,我们开发了一种高通量的方法来合成和测试感兴趣基因中所有可能的框架内和连续缺失的功能,从而能够快速、公正地确定蛋白质结构域的重要性。我们的方法使用 CRISPR 文库框架生成精确的缺失,该框架不受 gRNA 靶位点可用性和效率的限制。我们将我们的方法应用于 AcrIIA4,一种噬菌体编码的抗 CRISPR 蛋白,它能有效地抑制 SpCas9。广泛的结构特征表明,AcrIIA4 物理占据了几个 SpCas9 结构域的 DNA 结合界面;尽管如此,AcrIIA4 与 SpCas9 抑制相关的每一个相互作用的重要性尚不清楚。我们使用我们的方法来确定 AcrIIA4 的必需和非必需区域。令人惊讶的是,并非所有与 SpCas9 的接触都是必需的,特别是我们发现,插入 SpCas9 的 RuvC 催化结构域的 AcrIIA4 环可以被删除。我们的结果表明,AcrIIA4 主要通过阻止 PAM 结合来抑制 SpCas9,并且它与 SpCas9 催化结构域的相互作用是可有可无的。