Suppr超能文献

一种用于哺乳动物m6A位点预测的深度学习组合框架。

A combined deep learning framework for mammalian m6A site prediction.

作者信息

Fan Rui, Cui Chunmei, Kang Boming, Chang Zecheng, Wang Guoqing, Cui Qinghua

机构信息

Department of Biomedical Informatics, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.

Department of Biomedical Informatics, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.

出版信息

Cell Genom. 2024 Dec 11;4(12):100697. doi: 10.1016/j.xgen.2024.100697. Epub 2024 Nov 20.

Abstract

N-methyladenosine (m6A) is the most prevalent chemical modification in eukaryotic mRNAs and plays key roles in diverse cellular processes. Precise localization of m6A sites is thus critical for characterizing the functional roles of m6A in various conditions and dissecting the mechanisms governing its deposition. Here, we design a combined framework of Transformer architecture and recurrent neural network, deepSRAMP, to identify m6A sites using sequence-based and genome-derived features. As a result, deepSRAMP achieves a notably enhanced performance compared to its predecessor, SRAMP, the most-used predictor in this field. Moreover, based on multiple benchmark datasets, deepSRAMP greatly outperforms other state-of-the-art m6A predictors, including WHISTLE and DeepPromise, with an average 16.1% and 18.3% increase in AUROC and a 43.9% and 46.4% increase in AUPRC. Finally, deepSRAMP can be successfully exploited on mammalian m6A epitranscriptome mapping under diverse cellular conditions and can potentially reveal differential m6A sites among transcript isoforms of individual genes.

摘要

N-甲基腺苷(m6A)是真核生物mRNA中最普遍的化学修饰,在多种细胞过程中发挥关键作用。因此,m6A位点的精确定位对于表征m6A在各种条件下的功能作用以及剖析其沉积调控机制至关重要。在此,我们设计了一种结合Transformer架构和循环神经网络的框架——deepSRAMP,以利用基于序列和基因组衍生的特征来识别m6A位点。结果表明,与该领域最常用的预测器SRAMP相比,deepSRAMP的性能有显著提升。此外,基于多个基准数据集,deepSRAMP大大优于其他最先进的m6A预测器,包括WHISTLE和DeepPromise,其受试者工作特征曲线下面积(AUROC)平均提高了16.1%和18.3%,精确召回率下面积(AUPRC)提高了43.9%和46.4%。最后,deepSRAMP可成功应用于多种细胞条件下的哺乳动物m6A表观转录组图谱绘制,并有可能揭示单个基因转录本异构体之间的差异m6A位点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/562d/11701256/76811e2cea29/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验