Suppr超能文献

m6ATM:利用纳米孔长读 RNA-seq 数据解析 m6A 转录组奥秘的深度学习框架。

m6ATM: a deep learning framework for demystifying the m6A epitranscriptome with Nanopore long-read RNA-seq data.

机构信息

Advanced Data Science Division, Research Center of Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8904, Tokyo, Japan.

Genome Science & Medicine Division, Research Center of Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku 153-8904, Tokyo, Japan.

出版信息

Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae529.

Abstract

N6-methyladenosine (m6A) is one of the most abundant and well-known modifications in messenger RNAs since its discovery in the 1970s. Recent studies have demonstrated that m6A is involved in various biological processes, such as alternative splicing and RNA degradation, playing an important role in a variety of diseases. To better understand the role of m6A, transcriptome-wide m6A profiling data are indispensable. In recent years, the Oxford Nanopore Technology Direct RNA Sequencing (DRS) platform has shown promise for RNA modification detection based on current disruptions measured in transcripts. However, decoding current intensity data into modification profiles remains a challenging task. Here, we introduce the m6A Transcriptome-wide Mapper (m6ATM), a novel Python-based computational pipeline that applies deep neural networks to predict m6A sites at a single-base resolution using DRS data. The m6ATM model architecture incorporates a WaveNet encoder and a dual-stream multiple-instance learning model to extract features from specific target sites and characterize the m6A epitranscriptome. For validation, m6ATM achieved an accuracy of 80% to 98% across in vitro transcription datasets containing varying m6A modification ratios and outperformed other tools in benchmarking with human cell line data. Moreover, we demonstrated the versatility of m6ATM in providing reliable stoichiometric information and used it to pinpoint PEG10 as a potential m6A target transcript in liver cancer cells. In conclusion, m6ATM is a high-performance m6A detection tool, and our results pave the way for future advancements in epitranscriptomic research.

摘要

N6-甲基腺苷(m6A)是信使 RNA 中最丰富和最著名的修饰之一,自 20 世纪 70 年代发现以来。最近的研究表明,m6A 参与了各种生物过程,如选择性剪接和 RNA 降解,在多种疾病中发挥着重要作用。为了更好地理解 m6A 的作用,全转录组 m6A 谱分析数据是必不可少的。近年来,牛津纳米孔技术直接 RNA 测序(DRS)平台基于在转录本中测量的当前中断,显示出了用于 RNA 修饰检测的潜力。然而,将当前强度数据解码为修饰谱仍然是一项具有挑战性的任务。在这里,我们引入了 m6A 转录组全景映射器(m6ATM),这是一个基于 Python 的新型计算管道,它使用深度神经网络,基于 DRS 数据,以单碱基分辨率预测 m6A 位点。m6ATM 模型架构结合了 WaveNet 编码器和双流多实例学习模型,从特定的靶标位点提取特征,并对 m6A 表转录组进行特征描述。为了验证,m6ATM 在包含不同 m6A 修饰比例的体外转录数据集上实现了 80%至 98%的准确率,并且在与人类细胞系数据的基准测试中优于其他工具。此外,我们证明了 m6ATM 在提供可靠的化学计量信息方面的多功能性,并利用它在肝癌细胞中确定 PEG10 作为潜在的 m6A 靶转录物。总之,m6ATM 是一种高性能的 m6A 检测工具,我们的结果为今后的表转录组学研究铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19dd/11495873/ba25c8fcf815/bbae529f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验