Suppr超能文献

用于片上模拟光子计算的铸造制造紧凑型慢光马赫曾德尔调制器和光电探测器。

Foundry fabricated compact slow-light Mach-Zehnder modulator and photodetector for on-chip analog photonic computing.

作者信息

Begović Amir, Zhang Meng, Yin Dennis, Gangi Nicholas, Gu Jiaqi, Rena Huang Z

出版信息

Opt Express. 2024 Nov 4;32(23):42016-42030. doi: 10.1364/OE.540194.

Abstract

This work presents a scaling pathway of on-chip analog photonic computing using foundry-fabricated silicon electro-optic (EO) slow-light Mach-Zehnder modulators (SL-MZMs) and compact Ge photodetectors (PDs) to construct a computing unit. Two SL-MZMs with phase shifter (PS) lengths of 500 μm and 150 μm are studied in this work. The bit resolution, nonlinearity, clock frequency, and power consumption of the photonic computing link, including an RF amplifier, on-chip SL-MZM, and a PD, are thoroughly investigated. The computing link using the SL-MZM with 500 μm has demonstrated a low normalized mean square error (NMSE) of 0.0305 at 8-bit resolution under 3.2 GHz clock frequency. Under the setting of 6-bit resolution at a clock frequency of 800 MHz, high computing accuracy was achieved with a measured NMSE of 0.0018 using the SL-MZM with 150 μm PS length. Using the Google Speed Commands dataset to run a voice keyword spotting task, we determine that 6-bit resolution operating at 3.2 GHz achieves the optimal power-accuracy trade-off. We show a 20× improvement in energy efficiency and a 3.35× improvement in area efficiency compared to NVIDIA V100 GPU ["Volta: Performance and programmability," IEEE Micro38(2), 42 (2018)10.1109/MM.2018.022071134]. These results show that our compact SL-MZMs and PDs promise to scale up photonic computing for practical machine-learning applications.

摘要

这项工作展示了一种用于片上模拟光子计算的缩放路径,该路径使用代工制造的硅电光(EO)慢光马赫曾德尔调制器(SL-MZM)和紧凑型锗光电探测器(PD)来构建一个计算单元。在这项工作中,研究了两个相移器(PS)长度分别为500μm和150μm的SL-MZM。对包括射频放大器、片上SL-MZM和PD在内的光子计算链路的比特分辨率、非线性、时钟频率和功耗进行了深入研究。使用500μm的SL-MZM的计算链路在3.2GHz时钟频率下,8比特分辨率时展示出0.0305的低归一化均方误差(NMSE)。在800MHz时钟频率、6比特分辨率的设置下,使用PS长度为150μm的SL-MZM实现了高计算精度,实测NMSE为0.0018。使用谷歌速度命令数据集运行语音关键词识别任务,我们确定在3.2GHz运行的6比特分辨率实现了最佳的功率-精度权衡。与英伟达V100 GPU相比,我们展示了能量效率提高20倍,面积效率提高3.35倍["Volta:性能与可编程性",《IEEE微型计算机》38(2),42(2018)10.1109/MM.2018.022071134]。这些结果表明,我们的紧凑型SL-MZM和PD有望扩大光子计算在实际机器学习应用中的规模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验