Weiss Oren, Coen-Cagli Ruben
Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
bioRxiv. 2024 Nov 7:2024.11.06.622283. doi: 10.1101/2024.11.06.622283.
Sensory processing arises from the communication between neural populations across multiple brain areas. While the widespread presence of neural response variability shared throughout a neural population limits the amount of stimulus-related information those populations can accurately represent, how this variability affects the interareal communication of sensory information is unknown. We propose a mathematical framework to understand the impact of neural population response variability on sensory information transmission. We combine linear Fisher information, a metric connecting stimulus representation and variability, with the framework of communication subspaces, which suggests that functional mappings between cortical populations are low-dimensional relative to the space of population activity patterns. From this, we partition Fisher information depending on the alignment between the population covariance and the mean tuning direction projected onto the communication subspace or its orthogonal complement. We provide mathematical and numerical analyses of our proposed decomposition of Fisher information and examine theoretical scenarios that demonstrate how to leverage communication subspaces for flexible routing and gating of stimulus information. This work will provide researchers investigating interareal communication with a theoretical lens through which to understand sensory information transmission and guide experimental design.
感觉处理源于多个脑区神经群体之间的交流。虽然在整个神经群体中广泛存在的神经反应变异性限制了这些群体能够准确表征的与刺激相关的信息量,但这种变异性如何影响感觉信息的区域间交流尚不清楚。我们提出了一个数学框架来理解神经群体反应变异性对感觉信息传递的影响。我们将线性费希尔信息(一种连接刺激表征和变异性的度量)与通信子空间框架相结合,该框架表明皮层群体之间的功能映射相对于群体活动模式空间是低维的。据此,我们根据群体协方差与投影到通信子空间或其正交补空间上的平均调谐方向之间的对齐方式对费希尔信息进行划分。我们对提出的费希尔信息分解进行了数学和数值分析,并研究了理论场景,展示了如何利用通信子空间实现刺激信息的灵活路由和门控。这项工作将为研究区域间交流的研究人员提供一个理论视角,以理解感觉信息传递并指导实验设计。