Suppr超能文献

评估使用扩散去噪概率模型创建的合成扩散磁共振成像图谱。

Evaluating Synthetic Diffusion MRI Maps created with Diffusion Denoising Probabilistic Models.

作者信息

Chattopadhyay Tamoghna, Jagad Chirag, Kush Rudransh, Desai Vraj Dharmesh, Thomopoulos Sophia I, Villalón-Reina Julio E, Thompson Paul M

出版信息

bioRxiv. 2025 Feb 17:2024.11.06.621173. doi: 10.1101/2024.11.06.621173.

Abstract

Generative AI models, such as Stable Diffusion, DALL-E, and MidJourney, have recently gained widespread attention as they can generate high-quality synthetic images by learning the distribution of complex, high-dimensional image data. These models are now being adapted for medical and neuroimaging data, where AI-based tasks such as diagnostic classification and predictive modeling typically use deep learning methods, such as convolutional neural networks (CNNs) and vision transformers (ViTs), with interpretability enhancements. In our study, we trained latent diffusion models (LDM) and denoising diffusion probabilistic models (DDPM) specifically to generate synthetic diffusion tensor imaging (DTI) maps. We developed models that generate synthetic DTI maps of mean diffusivity by training on real 3D DTI scans, and evaluating realism and diversity of the synthetic data using maximum mean discrepancy (MMD) and multi-scale structural similarity index (MS-SSIM). We also assess the performance of a 3D CNN-based sex classifier, by training on combinations of real and synthetic DTIs, to check if performance improved when adding the synthetic scans during training, as a form of data augmentation. Our approach efficiently produces realistic and diverse synthetic data, potentially helping to create interpretable AI-driven maps for neuroscience research and clinical diagnostics.

摘要

生成式人工智能模型,如Stable Diffusion、DALL-E和MidJourney,最近受到了广泛关注,因为它们可以通过学习复杂的高维图像数据的分布来生成高质量的合成图像。这些模型现在正被应用于医学和神经成像数据,在这些领域,基于人工智能的任务,如诊断分类和预测建模,通常使用深度学习方法,如卷积神经网络(CNN)和视觉Transformer(ViT),并增强了可解释性。在我们的研究中,我们专门训练了潜在扩散模型(LDM)和去噪扩散概率模型(DDPM)来生成合成扩散张量成像(DTI)图。我们开发了通过对真实的3D DTI扫描进行训练来生成平均扩散率合成DTI图的模型,并使用最大均值差异(MMD)和多尺度结构相似性指数(MS-SSIM)评估合成数据的真实性和多样性。我们还通过在真实和合成DTI的组合上进行训练来评估基于3D CNN的性别分类器的性能,以检查在训练期间添加合成扫描作为一种数据增强形式时性能是否有所提高。我们的方法有效地产生了逼真且多样的合成数据,可能有助于为神经科学研究和临床诊断创建可解释的人工智能驱动的图谱。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验