Makke Nour, Chawla Sanjay
Qatar Computing Research Institute, HBKU, 34110 Doha, Qatar.
PNAS Nexus. 2024 Oct 17;3(11):pgae467. doi: 10.1093/pnasnexus/pgae467. eCollection 2024 Nov.
The application of atificial intelligence (AI) in fundamental physics has faced limitations due to its inherently uninterpretable nature, which is less conducive to solving physical problems where natural phenomena are expressed in human-understandable language, i.e. mathematical equations. Fortunately, there exists a form of interpretable AI that aligns seamlessly with this requirement, namely, symbolic regression (SR), which learns mathematical equations directly from data. We introduce a groundbreaking application of SR on actual experimental data with an unknown underlying model, representing a significant departure from previous applications, which are primarily limited to simulated data. This application aims to evaluate the reliability of SR as a bona fide scientific discovery tool. SR is applied on transverse-momentum-dependent distributions of charged hadrons measured in high-energy-physics experiments. The outcome underscores the capability of SR to derive an analytical expression closely resembling the Tsallis distribution. The latter is a well-established and widely employed functional form for fitting measured distributions across a broad spectrum of hadron transverse momentum. This achievement is among the first instances where SR demonstrates its potential as a scientific discovery tool. It holds promise for advancing and refining SR methods, paving the way for future applications on experimental data.
由于人工智能(AI)本质上不可解释,其在基础物理学中的应用面临局限,这不利于解决以人类可理解的语言(即数学方程)表述自然现象的物理问题。幸运的是,存在一种可解释的人工智能形式能无缝契合这一要求,即符号回归(SR),它直接从数据中学习数学方程。我们介绍了SR在具有未知基础模型的实际实验数据上的开创性应用,这与先前主要限于模拟数据的应用有显著不同。此应用旨在评估SR作为一种真正科学发现工具的可靠性。SR应用于高能物理实验中测量的带电强子的横向动量相关分布。结果强调了SR推导与Tsallis分布非常相似的解析表达式的能力。后者是一种成熟且广泛用于拟合各种强子横向动量测量分布的函数形式。这一成果是SR首次展现其作为科学发现工具潜力的实例之一。它有望推动和完善SR方法,为未来在实验数据上的应用铺平道路。