Ahmadi Daryakenari Nazanin, De Florio Mario, Shukla Khemraj, Karniadakis George Em
Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island, United States of America.
Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America.
PLoS Comput Biol. 2024 Mar 12;20(3):e1011916. doi: 10.1371/journal.pcbi.1011916. eCollection 2024 Mar.
Discovering mathematical equations that govern physical and biological systems from observed data is a fundamental challenge in scientific research. We present a new physics-informed framework for parameter estimation and missing physics identification (gray-box) in the field of Systems Biology. The proposed framework-named AI-Aristotle-combines the eXtreme Theory of Functional Connections (X-TFC) domain-decomposition and Physics-Informed Neural Networks (PINNs) with symbolic regression (SR) techniques for parameter discovery and gray-box identification. We test the accuracy, speed, flexibility, and robustness of AI-Aristotle based on two benchmark problems in Systems Biology: a pharmacokinetics drug absorption model and an ultradian endocrine model for glucose-insulin interactions. We compare the two machine learning methods (X-TFC and PINNs), and moreover, we employ two different symbolic regression techniques to cross-verify our results. To test the performance of AI-Aristotle, we use sparse synthetic data perturbed by uniformly distributed noise. More broadly, our work provides insights into the accuracy, cost, scalability, and robustness of integrating neural networks with symbolic regressors, offering a comprehensive guide for researchers tackling gray-box identification challenges in complex dynamical systems in biomedicine and beyond.
从观测数据中发现支配物理和生物系统的数学方程是科学研究中的一项基本挑战。我们提出了一种新的基于物理学知识的框架,用于系统生物学领域中的参数估计和缺失物理识别(灰箱)。所提出的框架名为AI-亚里士多德,它将功能连接极端理论(X-TFC)域分解、基于物理学知识的神经网络(PINN)与符号回归(SR)技术相结合,用于参数发现和灰箱识别。我们基于系统生物学中的两个基准问题测试了AI-亚里士多德的准确性、速度、灵活性和鲁棒性:一个药代动力学药物吸收模型和一个用于葡萄糖-胰岛素相互作用的超日内分泌模型。我们比较了两种机器学习方法(X-TFC和PINN),此外,我们采用两种不同的符号回归技术来交叉验证我们的结果。为了测试AI-亚里士多德的性能,我们使用了由均匀分布噪声干扰的稀疏合成数据。更广泛地说,我们的工作为将神经网络与符号回归器集成的准确性、成本、可扩展性和鲁棒性提供了见解,为研究人员应对生物医学及其他领域复杂动态系统中的灰箱识别挑战提供了全面指南。