Suppr超能文献

基于微滴的生物打印技术用于定制制造含细菌的活性材料。

Droplet-based bioprinting for the tailored fabrication of bacteria-laden living materials.

作者信息

Guo Xudong, Wang Dingyi, Guo Yingying, Zhang Junpeng, Li Yingying, Tian Haozhong, Liu Lihong, Liang Yong, Yin Yongguang, He Bin, Hu Ligang, Jiang Guibin

机构信息

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Bioprocess Biosyst Eng. 2025 Feb;48(2):261-273. doi: 10.1007/s00449-024-03106-0. Epub 2024 Nov 22.

Abstract

Droplet-based bioprinting (DBB) allows for high precision, noncontact, and on-demand distribution of bioinks, hence it has been widely utilized in the preparation of bacteria-laden living materials (BLMs). Nonetheless, discontinuous ink deposition makes it challenging to fabricate large-sized intact living structures via this technique. Herein, we explore the way of using DBB to construct centimeter-scale BLMs with bespoke geometries, and further demonstrate its potential applicability in sensing-responsive device by integrating engineered bacteria. We first established a DBB method based on printing-path design, which does not require hardware modification. This strategy was able to produce customized 3D-hydrogel structures with high shape fidelity. Then, we confirmed the excellent biocompatibility of the above biofabrication approach. The Escherichia coli survived 93% ± 4.0% in printed BLMs, with uniform distribution throughout the structure. As a proof-of-concept, we finally manufactured a test strip-like heavy metal biosensor capable of plug-and-play detecting mercury (II) in water using the aforesaid approach. To our knowledge, this is the first study to employ 3D bioprinted BLMs for the detection of prevalent heavy metal pollutants. Our research shed light on the versatility of DBB in BLMs construction, which is not restricted to two-dimensional patterns. Moreover, our results are expected to innovate heavy metal biodetection and improve detection efficiency and sensitivity.

摘要

基于液滴的生物打印(DBB)能够高精度、非接触且按需分配生物墨水,因此已被广泛应用于含细菌活性材料(BLMs)的制备。尽管如此,墨水的不连续沉积使得通过该技术制造大型完整活性结构具有挑战性。在此,我们探索了使用DBB构建具有定制几何形状的厘米级BLMs的方法,并通过整合工程细菌进一步证明其在传感响应设备中的潜在适用性。我们首先基于打印路径设计建立了一种DBB方法,该方法无需硬件修改。这种策略能够生产出具有高形状保真度的定制3D水凝胶结构。然后,我们证实了上述生物制造方法具有出色的生物相容性。大肠杆菌在打印的BLMs中的存活率为93%±4.0%,且在整个结构中分布均匀。作为概念验证,我们最终使用上述方法制造了一种试纸状重金属生物传感器,能够即插即用检测水中的汞(II)。据我们所知,这是第一项使用3D生物打印的BLMs检测常见重金属污染物的研究。我们的研究揭示了DBB在BLMs构建中的多功能性,其不限于二维图案。此外,我们的结果有望创新重金属生物检测并提高检测效率和灵敏度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验