Suppr超能文献

鼠麴草中抗氧化剂和淀粉酶的超声辅助提取智能模型及优化

Intelligent model and optimization of ultrasound-assisted extraction of antioxidants and amylase enzyme from Gnaphalium affine D. Don.

作者信息

Luangsakul Naphatrapi, Kunyanee Kannika, Kusumawardani Sandra, Ngo Tai Van

机构信息

School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.

School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.

出版信息

Ultrason Sonochem. 2025 Jan;112:107162. doi: 10.1016/j.ultsonch.2024.107162. Epub 2024 Nov 16.

Abstract

The study uses ultrasound-assisted extraction to recovery the antioxidant and amylase enzyme from Gnaphalium affine D. Don, namely "chewcut" in Thailand. The study involves two statistical methods: artificial neural networks (ANN) and response surface methodology (RSM) to model and optimize extraction procedure for improving the yield of antioxidant and amylase enzyme activity (AEA). Both RSM and ANN showed the potential to predict and find the optimal extraction conditions. However, ANN model could give more accurate values compared with validation test. ANN model found that under optimal conditions (temperature: 65.92 °C, ultrasonic power: 58.22 %, extraction time: 37.95 min), the total phenolic compounds, total flavonoid compounds, antioxidant activity and AEA were 218.35 ± 0.34 mgGAE/g, 0.554 ± 0.045 mgQE/g, 84.2 ± 0.2 %, 364.14 ± 1.35 mg-maltose/g. This is the first report on amylase potential of chewcut, which could be further served as the natural enzyme source. Moreover, by adding its bioactive compounds, it may be possible to improve nutraceutical properties and quality of products.

摘要

该研究采用超声辅助提取法从泰国名为“chewcut”的鼠麴草中提取抗氧化剂和淀粉酶。该研究涉及两种统计方法:人工神经网络(ANN)和响应面法(RSM),用于对提取过程进行建模和优化,以提高抗氧化剂产量和淀粉酶活性(AEA)。RSM和ANN都显示出预测和找到最佳提取条件的潜力。然而,与验证测试相比,ANN模型能给出更准确的值。ANN模型发现,在最佳条件下(温度:65.92℃,超声功率:58.22%,提取时间:37.95分钟),总酚类化合物、总黄酮类化合物、抗氧化活性和AEA分别为218.35±0.34mg GAE/g、0.554±0.045mg QE/g、84.2±0.2%、364.14±1.35mg麦芽糖/g。这是关于chewcut淀粉酶潜力的首次报道,其可进一步用作天然酶源。此外,通过添加其生物活性化合物,有可能改善营养保健品的特性和产品质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e45/11625157/0d8bdf3ae162/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验