Suppr超能文献

用于随机退役条件下可持续电池回收的生成式学习辅助健康状态估计

Generative learning assisted state-of-health estimation for sustainable battery recycling with random retirement conditions.

作者信息

Tao Shengyu, Ma Ruifei, Zhao Zixi, Ma Guangyuan, Su Lin, Chang Heng, Chen Yuou, Liu Haizhou, Liang Zheng, Cao Tingwei, Ji Haocheng, Han Zhiyuan, Lu Minyan, Yang Huixiong, Wen Zongguo, Yao Jianhua, Yu Rong, Wei Guodan, Li Yang, Zhang Xuan, Xu Tingyang, Zhou Guangmin

机构信息

Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.

State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing, China.

出版信息

Nat Commun. 2024 Nov 23;15(1):10154. doi: 10.1038/s41467-024-54454-0.

Abstract

Rapid and accurate state of health (SOH) estimation of retired batteries is a crucial pretreatment for reuse and recycling. However, data-driven methods require exhaustive data curation under random SOH and state of charge (SOC) retirement conditions. Here, we show that the generative learning-assisted SOH estimation is promising in alleviating data scarcity and heterogeneity challenges, validated through a pulse injection dataset of 2700 retired lithium-ion battery samples, covering 3 cathode material types, 3 physical formats, 4 capacity designs, and 4 historical usages with 10 SOC levels. Using generated data, a regressor realizes accurate SOH estimations, with mean absolute percentage errors below 6% under unseen SOC. We predict that assuming uniform deployment of the proposed technique, this would save 4.9 billion USD in electricity costs and 35.8 billion kg CO emissions by mitigating data curation costs for a 2030 worldwide battery retirement scenario. This paper highlights exploiting limited data for exploring extended data space using generative methods, given data can be time-consuming, expensive, and polluting to retrieve for many estimation and predictive tasks.

摘要

快速准确地估计退役电池的健康状态(SOH)是电池再利用和回收的关键预处理步骤。然而,数据驱动的方法需要在随机的SOH和充电状态(SOC)退役条件下进行详尽的数据整理。在此,我们表明,生成式学习辅助的SOH估计在缓解数据稀缺和异质性挑战方面很有前景,这通过一个包含2700个退役锂离子电池样本的脉冲注入数据集得到验证,该数据集涵盖3种阴极材料类型、3种物理形式、4种容量设计以及4种历史使用情况,且具有10个SOC水平。利用生成的数据,一个回归器实现了准确的SOH估计,在未见过的SOC条件下平均绝对百分比误差低于6%。我们预测,假设所提出的技术得到统一部署,对于2030年全球电池退役情景,通过降低数据整理成本,这将节省49亿美元的电力成本,并减少358亿千克的二氧化碳排放。鉴于对于许多估计和预测任务而言,数据检索可能耗时、昂贵且具有污染性,本文强调利用有限的数据通过生成方法探索扩展的数据空间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad76/11584641/aa2acf9dae04/41467_2024_54454_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验