Suppr超能文献

交互式与非交互式移动应用程序干预对2型糖尿病的预后效果:一项系统评价与荟萃分析

Prognostic effectiveness of interactive vs. non-interactive mobile app interventions in type 2 diabetes: a systematic review and meta-analysis.

作者信息

Tang Zheng, Zhao Lijuan, Li Jixin, Yang Yang, Liu Fengzhao, Li Han, Yang Zhenyu, Qin Shanyu, Li Xinqin

机构信息

College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China.

First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China.

出版信息

Arch Public Health. 2024 Nov 22;82(1):221. doi: 10.1186/s13690-024-01450-x.

Abstract

BACKGROUND

Mobile app interventions are emerging as significant tools in managing the prognosis of type 2 diabetes, demonstrating progressively greater impacts. The effectiveness of these interventions needs further evidence-based support.

OBJECTIVE

This study conducted a systematic review and meta-analysis of randomized controlled trials to evaluate the effectiveness of mobile app interventions in improving prognosis for patients with type 2 diabetes.

METHODS

We searched PubMed, Cochrane, Embase, and Web of Science for relevant studies published from inception to 18 April 2024, adhering to the Cochrane Handbook guidelines. The quality of the included studies was assessed using the Cochrane risk of bias tool. Primary outcomes measured were changes in glycated hemoglobin (HbA1c) and diabetes self-management (DSM). Secondary outcomes included changes in diastolic blood pressure (DBP), systolic blood pressure (SBP), triglycerides(TG), total cholesterol(TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), lipid profiles, fasting plasma glucose (FPG), body mass index (BMI), and Steps outcomes. Subgroup analyses were performed for the primary outcomes and for high-density lipoprotein (HDL), low-density lipoprotein (LDL), diastolic blood pressure (DBP), and systolic blood pressure (SBP). Interventions with or without interactions were also used as a basis for subgrouping.

RESULTS

A total of 15 eligible articles involving 17 studies with 2,028 subjects (1,123 in the intervention group and 1,020 in the control group) were included in the synthesis. Interactive mobile app interventions significantly reduced HbA1c levels (SMD - 0.24; 95% CI, -0.33 to -0.15; P < 0.00001) and significantly improved diabetes self-care (SMD 0.71; 95% CI, 0.21 to 1.21; P = 0.005). Secondary outcomes, including FPG, LDL, DBP, and SBP, showed varying degrees of improvement. Subgroup analyses indicated that the intervention effect was more pronounced and less heterogeneous in the short-term (≤ 3 months) for younger Asian individuals (< 55 years) who used an interactive mobile app.

CONCLUSION

Interactive mobile app interventions effectively improve HbA1c levels and diabetes self-care competencies in patients with type 2 diabetes. These interventions offer supportive evidence for their clinical use in managing and prognosticating type 2 diabetes.

SYSTEMATIC REVIEW REGISTRATION

CRD42024550643.

摘要

背景

移动应用程序干预正逐渐成为管理2型糖尿病预后的重要工具,其影响日益显著。这些干预措施的有效性需要更多基于证据的支持。

目的

本研究对随机对照试验进行系统评价和荟萃分析,以评估移动应用程序干预对改善2型糖尿病患者预后的有效性。

方法

我们按照Cochrane手册指南,在PubMed、Cochrane、Embase和Web of Science中检索了从创刊到2024年4月18日发表的相关研究。使用Cochrane偏倚风险工具评估纳入研究的质量。主要测量结局为糖化血红蛋白(HbA1c)和糖尿病自我管理(DSM)的变化。次要结局包括舒张压(DBP)、收缩压(SBP)、甘油三酯(TG)、总胆固醇(TC)、高密度脂蛋白(HDL)、低密度脂蛋白(LDL)、血脂谱、空腹血糖(FPG)、体重指数(BMI)和步数结局的变化。对主要结局以及高密度脂蛋白(HDL)、低密度脂蛋白(LDL)、舒张压(DBP)和收缩压(SBP)进行亚组分析。有或无交互作用的干预措施也作为亚组划分的依据。

结果

共有15篇符合条件的文章,涉及17项研究,共2028名受试者(干预组1123名,对照组1020名)纳入分析。交互式移动应用程序干预显著降低了HbA1c水平(标准化均数差 -0.24;95%置信区间,-0.33至-0.15;P < 0.00001),并显著改善了糖尿病自我护理(标准化均数差0.71;95%置信区间,0.21至1.21;P = 0.005)。包括空腹血糖、低密度脂蛋白、舒张压和收缩压在内的次要结局显示出不同程度的改善。亚组分析表明,对于使用交互式移动应用程序的年龄较小(<55岁)的亚洲个体,在短期(≤3个月)内干预效果更显著且异质性更小。

结论

交互式移动应用程序干预可有效改善2型糖尿病患者的HbA1c水平和糖尿病自我护理能力。这些干预措施为其在2型糖尿病管理和预后评估中的临床应用提供了支持性证据。

系统评价注册

CRD42024550643。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e3b/11583391/ef048f2fdf1b/13690_2024_1450_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验