Suppr超能文献

学习观察何处:一种用于自动化免疫组化评分的新型注意力模型。

Learning Where to See: A Novel Attention Model for Automated Immunohistochemical Scoring.

出版信息

IEEE Trans Med Imaging. 2019 Nov;38(11):2620-2631. doi: 10.1109/TMI.2019.2907049. Epub 2019 Mar 22.

Abstract

Estimating over-amplification of human epidermal growth factor receptor 2 (HER2) on invasive breast cancer is regarded as a significant predictive and prognostic marker. We propose a novel deep reinforcement learning (DRL)-based model that treats immunohistochemical (IHC) scoring of HER2 as a sequential learning task. For a given image tile sampled from multi-resolution giga-pixel whole slide image (WSI), the model learns to sequentially identify some of the diagnostically relevant regions of interest (ROIs) by following a parameterized policy. The selected ROIs are processed by recurrent and residual convolution networks to learn the discriminative features for different HER2 scores and predict the next location, without requiring to process all the sub-image patches of a given tile for predicting the HER2 score, mimicking the histopathologist who would not usually analyze every part of the slide at the highest magnification. The proposed model incorporates a task-specific regularization term and inhibition of return mechanism to prevent the model from revisiting the previously attended locations. We evaluated our model on two IHC datasets: a publicly available dataset from the HER2 scoring challenge contest and another dataset consisting of WSIs of gastroenteropancreatic neuroendocrine tumor sections stained with Glo1 marker. We demonstrate that the proposed model outperforms other methods based on state-of-the-art deep convolutional networks. To the best of our knowledge, this is the first study using DRL for IHC scoring and could potentially lead to wider use of DRL in the domain of computational pathology reducing the computational burden of the analysis of large multi-gigapixel histology images.

摘要

估计人表皮生长因子受体 2(HER2)在浸润性乳腺癌中的过度扩增被认为是一个重要的预测和预后标志物。我们提出了一种新的基于深度强化学习(DRL)的模型,将 HER2 的免疫组织化学(IHC)评分视为一个顺序学习任务。对于从多分辨率千兆像素全幻灯片图像(WSI)中采样的给定图像块,该模型通过遵循参数化策略学会顺序识别一些与诊断相关的感兴趣区域(ROI)。选择的 ROI 通过递归和残差卷积网络进行处理,以学习不同 HER2 评分的判别特征,并预测下一个位置,而无需处理给定块的所有子图像补丁来预测 HER2 评分,模仿病理学家通常不会在最高放大倍数下分析幻灯片的每一部分。所提出的模型结合了特定于任务的正则化项和返回抑制机制,以防止模型重新访问先前关注的位置。我们在两个 IHC 数据集上评估了我们的模型:一个来自 HER2 评分挑战竞赛的公开数据集,另一个由用 Glo1 标记染色的胃肠胰腺神经内分泌肿瘤切片的 WSI 组成的数据集。我们证明,所提出的模型优于基于最先进的深度卷积网络的其他方法。据我们所知,这是首次使用 DRL 进行 IHC 评分的研究,它有可能导致 DRL 在计算病理学领域的更广泛应用,从而减轻对大型多千兆像素组织学图像分析的计算负担。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验