Suppr超能文献

只见树木,不见森林。邻居对组织病理学中基于图谱配置的影响。

Not seeing the trees for the forest. The impact of neighbours on graph-based configurations in histopathology.

作者信息

Fourkioti Olga, De Vries Matt, Naidoo Reed, Bakal Chris

机构信息

The Institute of Cancer Research, London, United Kingdom.

Imperial College, London, United Kingdom.

出版信息

BMC Bioinformatics. 2025 Jan 11;26(1):9. doi: 10.1186/s12859-024-06007-x.

Abstract

BACKGROUND

Deep learning (DL) has set new standards in cancer diagnosis, significantly enhancing the accuracy of automated classification of whole slide images (WSIs) derived from biopsied tissue samples. To enable DL models to process these large images, WSIs are typically divided into thousands of smaller tiles, each containing 10-50 cells. Multiple Instance Learning (MIL) is a commonly used approach, where WSIs are treated as bags comprising numerous tiles (instances) and only bag-level labels are provided during training. The model learns from these broad labels to extract more detailed, instance-level insights. However, biopsied sections often exhibit high intra- and inter-phenotypic heterogeneity, presenting a significant challenge for classification. To address this, many graph-based methods have been proposed, where each WSI is represented as a graph with tiles as nodes and edges defined by specific spatial relationships.

RESULTS

In this study, we investigate how different graph configurations, varying in connectivity and neighborhood structure, affect the performance of MIL models. We developed a novel pipeline, K-MIL, to evaluate the impact of contextual information on cell classification performance. By incorporating neighboring tiles into the analysis, we examined whether contextual information improves or impairs the network's ability to identify patterns and features critical for accurate classification. Our experiments were conducted on two datasets: COLON cancer and UCSB datasets.

CONCLUSIONS

Our results indicate that while incorporating more spatial context information generally improves model accuracy at both the bag and tile levels, the improvement at the tile level is not linear. In some instances, increasing spatial context leads to misclassification, suggesting that more context is not always beneficial. This finding highlights the need for careful consideration when incorporating spatial context information in digital pathology classification tasks.

摘要

背景

深度学习(DL)在癌症诊断方面树立了新的标准,显著提高了源自活检组织样本的全切片图像(WSIs)自动分类的准确性。为了使深度学习模型能够处理这些大图像,全切片图像通常被分割成数千个较小的图像块,每个图像块包含10 - 50个细胞。多实例学习(MIL)是一种常用的方法,其中全切片图像被视为由众多图像块(实例)组成的包,并且在训练期间仅提供包级标签。该模型从这些宽泛的标签中学习,以提取更详细的实例级见解。然而,活检切片通常表现出高度的表型内和表型间异质性,这对分类提出了重大挑战。为了解决这个问题,已经提出了许多基于图的方法,其中每个全切片图像被表示为一个图,图像块作为节点,边由特定的空间关系定义。

结果

在本研究中,我们研究了不同的图配置(在连通性和邻域结构方面有所不同)如何影响多实例学习模型的性能。我们开发了一种新颖的管道K - MIL,以评估上下文信息对细胞分类性能的影响。通过将相邻图像块纳入分析,我们研究了上下文信息是提高还是损害了网络识别对准确分类至关重要的模式和特征的能力。我们的实验在两个数据集上进行:结肠癌和加州大学圣巴巴拉分校数据集。

结论

我们的结果表明,虽然纳入更多的空间上下文信息通常会提高模型在包级和图像块级的准确性,但在图像块级的提高不是线性的。在某些情况下,增加空间上下文会导致错误分类,这表明更多的上下文并不总是有益的。这一发现凸显了在数字病理学分类任务中纳入空间上下文信息时需要仔细考虑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f45/11724494/6e4e25b9c120/12859_2024_6007_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验