Suppr超能文献

采用内外网的单色数字苏木精-伊红染色。

Single color digital H&E staining with In-and-Out Net.

作者信息

Chen Mengkun, Liu Yen-Tung, Khan Fadeel Sher, Fox Matthew C, Reichenberg Jason S, Lopes Fabiana C P S, Sebastian Katherine R, Markey Mia K, Tunnell James W

机构信息

University of Texas at Austin, Department of Biomedical Engineering, 107 W Dean Keeton St, Austin, 78712, TX, United States.

The University of Texas at Austin, Division of Dermatology, Dell Medical School, 1301 Barbara Jordan Blvd #200, Austin, 78732, TX, United States.

出版信息

Comput Med Imaging Graph. 2024 Dec;118:102468. doi: 10.1016/j.compmedimag.2024.102468. Epub 2024 Nov 20.

Abstract

Digital staining streamlines traditional staining procedures by digitally generating stained images from unstained or differently stained images. While conventional staining methods involve time-consuming chemical processes, digital staining offers an efficient and low-infrastructure alternative. Researchers can expedite tissue analysis without physical sectioning by leveraging microscopy-based techniques, such as confocal microscopy. However, interpreting grayscale or pseudo-color microscopic images remains challenging for pathologists and surgeons accustomed to traditional histologically stained images. To fill this gap, various studies explore digitally simulating staining to mimic targeted histological stains. This paper introduces a novel network, In-and-Out Net, designed explicitly for digital staining tasks. Based on Generative Adversarial Networks (GAN), our model efficiently transforms Reflectance Confocal Microscopy (RCM) images into Hematoxylin and Eosin (H&E) stained images. Using aluminum chloride preprocessing for skin tissue, we enhance nuclei contrast in RCM images. We trained the model with digital H&E labels featuring two fluorescence channels, eliminating the need for image registration and providing pixel-level ground truth. Our contributions include proposing an optimal training strategy, conducting a comparative analysis demonstrating state-of-the-art performance, validating the model through an ablation study, and collecting perfectly matched input and ground truth images without registration. In-and-Out Net showcases promising results, offering a valuable tool for digital staining tasks and advancing the field of histological image analysis.

摘要

数字染色通过从未染色或不同染色的图像中数字生成染色图像,简化了传统染色程序。传统染色方法涉及耗时的化学过程,而数字染色提供了一种高效且基础设施要求低的替代方案。研究人员可以利用基于显微镜的技术,如共聚焦显微镜,在不进行物理切片的情况下加快组织分析。然而,对于习惯传统组织学染色图像的病理学家和外科医生来说,解读灰度或伪彩色显微镜图像仍然具有挑战性。为了填补这一空白,各种研究探索数字模拟染色以模仿目标组织学染色。本文介绍了一种专门为数字染色任务设计的新型网络——In-and-Out Net。基于生成对抗网络(GAN),我们的模型有效地将反射共聚焦显微镜(RCM)图像转换为苏木精和伊红(H&E)染色图像。通过对皮肤组织进行氯化铝预处理,我们增强了RCM图像中的细胞核对比度。我们使用具有两个荧光通道的数字H&E标签对模型进行训练,无需图像配准并提供像素级的真实数据。我们的贡献包括提出一种优化的训练策略,进行比较分析以展示其先进性能,通过消融研究验证模型,并收集无需配准的完美匹配的输入图像和真实数据图像。In-and-Out Net展示了有前景的结果,为数字染色任务提供了一个有价值的工具,并推动了组织学图像分析领域的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验