Suppr超能文献

使用深度学习对皮肤进行无活检的体内虚拟组织学分析。

Biopsy-free in vivo virtual histology of skin using deep learning.

作者信息

Li Jingxi, Garfinkel Jason, Zhang Xiaoran, Wu Di, Zhang Yijie, de Haan Kevin, Wang Hongda, Liu Tairan, Bai Bijie, Rivenson Yair, Rubinstein Gennady, Scumpia Philip O, Ozcan Aydogan

机构信息

Electrical and Computer Engineering Department, University of California, Los Angeles, CA, 90095, USA.

Bioengineering Department, University of California, Los Angeles, CA, 90095, USA.

出版信息

Light Sci Appl. 2021 Nov 18;10(1):233. doi: 10.1038/s41377-021-00674-8.

Abstract

An invasive biopsy followed by histological staining is the benchmark for pathological diagnosis of skin tumors. The process is cumbersome and time-consuming, often leading to unnecessary biopsies and scars. Emerging noninvasive optical technologies such as reflectance confocal microscopy (RCM) can provide label-free, cellular-level resolution, in vivo images of skin without performing a biopsy. Although RCM is a useful diagnostic tool, it requires specialized training because the acquired images are grayscale, lack nuclear features, and are difficult to correlate with tissue pathology. Here, we present a deep learning-based framework that uses a convolutional neural network to rapidly transform in vivo RCM images of unstained skin into virtually-stained hematoxylin and eosin-like images with microscopic resolution, enabling visualization of the epidermis, dermal-epidermal junction, and superficial dermis layers. The network was trained under an adversarial learning scheme, which takes ex vivo RCM images of excised unstained/label-free tissue as inputs and uses the microscopic images of the same tissue labeled with acetic acid nuclear contrast staining as the ground truth. We show that this trained neural network can be used to rapidly perform virtual histology of in vivo, label-free RCM images of normal skin structure, basal cell carcinoma, and melanocytic nevi with pigmented melanocytes, demonstrating similar histological features to traditional histology from the same excised tissue. This application of deep learning-based virtual staining to noninvasive imaging technologies may permit more rapid diagnoses of malignant skin neoplasms and reduce invasive skin biopsies.

摘要

侵入性活检后进行组织学染色是皮肤肿瘤病理诊断的金标准。该过程繁琐且耗时,常常导致不必要的活检和疤痕。诸如反射式共聚焦显微镜(RCM)等新兴的非侵入性光学技术能够在不进行活检的情况下,提供无标记的、细胞水平分辨率的皮肤体内图像。尽管RCM是一种有用的诊断工具,但由于所获取的图像是灰度的,缺乏核特征,并且难以与组织病理学相关联,因此需要专门的培训。在此,我们提出了一个基于深度学习的框架,该框架使用卷积神经网络将未染色皮肤的体内RCM图像快速转换为具有微观分辨率的虚拟染色苏木精和伊红样图像,从而能够可视化表皮、真皮 - 表皮交界处和浅表真皮层。该网络在对抗学习方案下进行训练,该方案将切除的未染色/无标记组织的离体RCM图像作为输入,并使用用醋酸核对比染色标记的同一组织的微观图像作为基准真值。我们表明,这种经过训练的神经网络可用于快速对正常皮肤结构、基底细胞癌和带有色素沉着黑素细胞的黑素细胞痣的体内无标记RCM图像进行虚拟组织学分析,显示出与来自同一切除组织的传统组织学相似的组织学特征。基于深度学习的虚拟染色在非侵入性成像技术中的这种应用可能允许对恶性皮肤肿瘤进行更快速的诊断,并减少侵入性皮肤活检。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e14/8602311/138bc5818007/41377_2021_674_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验