Suppr超能文献

使用变分自编码器的单导联心电图信号异常检测的解缠表示学习

Disentangled representational learning for anomaly detection in single-lead electrocardiogram signals using variational autoencoder.

作者信息

Kapsecker Maximilian, Möller Matthias C, Jonas Stephan M

机构信息

TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstraße 3, Garching bei München, 85748, Bavaria, Germany; Institute for Digital Medicine, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, North Rhine-Westphalia, Germany.

Department of Paediatric Cardiology and Paediatric Cardiac Surgery, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, North Rhine-Westphalia, Germany.

出版信息

Comput Biol Med. 2025 Jan;184:109422. doi: 10.1016/j.compbiomed.2024.109422. Epub 2024 Nov 23.

Abstract

Wearable technology enables the unsupervised recording of electrocardiogram (ECG) signals. Analyzing these high-dimensional ECG data poses challenges regarding statistical approaches and explainability. This work investigates the feasibility of medically explainable anomaly detection through disentangled representational learning of ECGs and personalization to mitigate inter-subject variations. Five open-source ECG datasets were converted into a set of denoised one-second traces of lead I signal, each covering individual features such as wave morphologies and pathologies. A beta total correlation variational autoencoder was optimized on four of these datasets for 68 systematic parameterization variants. The best-performing model revealed disentanglement in the 12-dimensional embedding space, specifically between atrial- and ventricular features. Within the embedding space, a k-nearest neighbor classifier was evaluated on a left-out test set tailored for anomaly detection. The result is a F1 score of 0.94 for the binary prediction of sinus rhythm and the pathological classes: Left bundle branch block, right bundle branch block, myocardial infarction, and AV block (1st degree). The 90.94% accuracy in anomaly detection falls within the range of established detectors (89.38%-99.77%) but offers the advantage of being explainable and largely unsupervised. Model fine-tuning for each of 100 randomly sampled individuals of the Icentia11k dataset mitigated inter-subject variations. The associated F1 score for predicting normal, premature atrial contraction, and premature ventricular contraction from the embedding space was 0.93. The distribution plots of pathologies along the explainable axis were reasonably consistent with medical expertise. The results suggest the presented disentangled variational autoencoder as a robust method for explainable ECG representation.

摘要

可穿戴技术能够在无人监督的情况下记录心电图(ECG)信号。分析这些高维ECG数据在统计方法和可解释性方面带来了挑战。这项工作通过对ECG进行解缠表征学习和个性化处理以减轻个体间差异,研究了医学上可解释的异常检测的可行性。五个开源ECG数据集被转换为一组去噪后的I导联信号的一秒迹线,每个迹线都涵盖了诸如波形形态和病理等个体特征。针对其中四个数据集,对68种系统参数化变体优化了一个β总相关变分自编码器。性能最佳的模型在12维嵌入空间中显示出解缠,特别是在心房和心室特征之间。在嵌入空间内,在为异常检测量身定制的留出测试集上评估了k近邻分类器。对于窦性心律和病理类别(左束支传导阻滞、右束支传导阻滞、心肌梗死和一度房室传导阻滞)的二元预测,结果的F1分数为0.94。异常检测中90.94%的准确率落在既定检测器的范围内(89.38%-99.77%),但具有可解释且基本无需监督的优势。对Icentia11k数据集的100个随机抽样个体中的每一个进行模型微调,减轻了个体间差异。从嵌入空间预测正常、房性早搏和室性早搏的相关F1分数为0.93。沿可解释轴的病理分布图与医学专业知识合理一致。结果表明,所提出的解缠变分自编码器是一种用于可解释ECG表征的稳健方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验