Suppr超能文献

基于 CT 与全肺分析深度学习模型预测免疫检查点抑制剂相关性肺炎。

Predicting Immune Checkpoint Inhibitor-Related Pneumonitis via Computed Tomography and Whole-Lung Analysis Deep Learning.

机构信息

Medical School of Chinese PLA, Beijing, China.

Department of Respiratory and Critical Care Medicine, Air Force Medical Center, Beijing, China.

出版信息

Curr Med Imaging. 2024;20:e15734056314192. doi: 10.2174/0115734056314192241002075034.

Abstract

BACKGROUND

Immune checkpoint inhibitor-related pneumonitis (ICI-P) is a fatal adverse event of immunotherapy. However, there is a lack of methods to identify patients who have a high risk of developing ICI-P in immunotherapy.

PURPOSE

We aim at predicting the individualized risk of developing ICI-P by computed tomography (CT) images and deep learning to assist in personalized immunotherapy planning.

METHODS

We first explored the prognostic value of the commonly used clinical factors. Moreover, we proposed a novel whole-lung analysis deep learning (DL) model, which is constructed using a combination of Densely Connected Convolutional Networks (DenseNet) and Feature Pyramid Networks (FPN). This DL model mines global lung information from CT images for predicting the risk of developing ICI-P, and it is fully automated and does not require manually annotating images. Finally, 157 patients were collected and randomly divided into training and testing sets for performance evaluation.

RESULTS

In the testing set, the clinical model achieved an Area Under the Curve (AUC) of 0.710 and accuracy of 0.625. By mining global lung information, the DL model achieved AUC=0.780 and accuracy=0.729 in the testing set, where the DL score revealed a significant difference between ICI-P and non-ICI-P patients. Through deep learning visualization technique, we found that many areas outside of tumor (e.g., pleural retraction, pleural effusion, and the abnormalities in vessels) are important for predicting the risk of developing ICI-P in immunotherapy.

CONCLUSIONS

The whole-lung analysis DL model provides an easy-to-use method for identifying patients at high risk of developing ICI-P by CT images, which is important for individualized treatment planning in immunotherapy. The performance improvement over the clinical model indicates that mining whole-lung information in CT images is effective for prognostic prediction in immunotherapy.

摘要

背景

免疫检查点抑制剂相关肺炎(ICI-P)是免疫治疗的一种致命不良反应。然而,目前缺乏识别免疫治疗中发生 ICI-P 风险较高的患者的方法。

目的

我们旨在通过计算机断层扫描(CT)图像和深度学习来预测发生 ICI-P 的个体风险,以协助个性化免疫治疗计划。

方法

我们首先探索了常用临床因素的预后价值。此外,我们提出了一种新的全肺分析深度学习(DL)模型,该模型由密集连接卷积网络(DenseNet)和特征金字塔网络(FPN)组合构建。该 DL 模型从 CT 图像中挖掘全局肺信息以预测发生 ICI-P 的风险,它是完全自动化的,不需要手动标注图像。最后,收集了 157 名患者,并将其随机分为训练集和测试集进行性能评估。

结果

在测试集中,临床模型的曲线下面积(AUC)为 0.710,准确性为 0.625。通过挖掘全局肺信息,DL 模型在测试集中的 AUC 为 0.780,准确性为 0.729,其中 DL 评分显示 ICI-P 患者与非 ICI-P 患者之间存在显著差异。通过深度学习可视化技术,我们发现肿瘤以外的许多区域(如胸膜回缩、胸腔积液和血管异常)对于预测免疫治疗中发生 ICI-P 的风险很重要。

结论

全肺分析 DL 模型通过 CT 图像为识别发生 ICI-P 风险较高的患者提供了一种易于使用的方法,这对于免疫治疗中的个体化治疗计划很重要。与临床模型相比,性能的提高表明挖掘 CT 图像中的全肺信息对免疫治疗中的预后预测是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验