Suppr超能文献

深度学习用于预测肺癌中免疫检查点抑制剂相关肺炎的风险

Deep learning for predicting the risk of immune checkpoint inhibitor-related pneumonitis in lung cancer.

作者信息

Cheng M, Lin R, Bai N, Zhang Y, Wang H, Guo M, Duan X, Zheng J, Qiu Z, Zhao Y

机构信息

Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China.

College of Information and Computer Engineering, Northeast Forestry University, Harbin, Heilongjiang Province, China.

出版信息

Clin Radiol. 2023 May;78(5):e377-e385. doi: 10.1016/j.crad.2022.12.013. Epub 2023 Jan 14.

Abstract

AIM

To develop and validate a nomogram model that combines computed tomography (CT)-based radiological factors extracted from deep-learning and clinical factors for the early predictions of immune checkpoint inhibitor-related pneumonitis (ICI-P).

MATERIALS AND METHODS

Forty ICI-P patients and 101 patients without ICI-P were divided randomly into the training (n=113) and test (n=28) sets. The convolution neural network (CNN) algorithm was used to extract the CT-based radiological features of predictable ICI-P and calculated the CT score of each patient. A nomogram model to predict the risk of ICI-P was developed by logistic regression.

RESULTS

CT score was calculated from five radiological features extracted by the residual neural network-50-V2 with feature pyramid networks. Four predictors of ICI-P in the nomogram model included a clinical feature (pre-existing lung diseases), two serum markers (absolute lymphocyte count and lactate dehydrogenase), and a CT score. The area under curve of the nomogram model in the training (0.910 versus 0.871 versus 0.778) and test (0.900 versus 0.856 versus 0.869) sets was better than the radiological and clinical models. The nomogram model showed good consistency and better clinical practicability.

CONCLUSION

The nomogram model that combined CT-based radiological factors and clinical factors can be used as a new non-invasive tool for the early prediction of ICI-P in lung cancer patients after immunotherapy with low cost and low manual input.

摘要

目的

开发并验证一种列线图模型,该模型结合从深度学习中提取的基于计算机断层扫描(CT)的放射学因素和临床因素,用于早期预测免疫检查点抑制剂相关肺炎(ICI-P)。

材料与方法

将40例ICI-P患者和101例非ICI-P患者随机分为训练集(n = 113)和测试集(n = 28)。采用卷积神经网络(CNN)算法提取可预测ICI-P的基于CT的放射学特征,并计算每位患者的CT评分。通过逻辑回归建立预测ICI-P风险的列线图模型。

结果

CT评分由带有特征金字塔网络的残差神经网络-50-V2提取的五个放射学特征计算得出。列线图模型中ICI-P的四个预测因子包括一个临床特征(既往肺部疾病)、两个血清标志物(绝对淋巴细胞计数和乳酸脱氢酶)和一个CT评分。训练集(0.910对0.871对0.778)和测试集(0.900对0.856对0.869)中列线图模型的曲线下面积优于放射学模型和临床模型。列线图模型显示出良好的一致性和更好的临床实用性。

结论

结合基于CT的放射学因素和临床因素的列线图模型可作为一种新的非侵入性工具,用于低成本、低人工投入的免疫治疗后肺癌患者ICI-P的早期预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验