Mahmoodi Mahboobeh, Ali Darabi Mohammad, Mohaghegh Neda, Erdem Ahmet, Ahari Amir, Abbasgholizadeh Reza, Tavafoghi Maryam, Hashemian Paria Mir, Hosseini Vahid, Iqbal Javed, Haghniaz Reihaneh, Montazerian Hossein, Jahangiry Jamileh, Nasrolahi Fatemeh, Mirjafari Arshia, Pagan Erik, Akbari Mohsen, Bae Hojae, John Johnson V, Heidari Hossein, Khademhosseini Ali, Hassani Najafabadi Alireza
Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, USA.
Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, USA.
Adv Funct Mater. 2024 Aug 8;34(32). doi: 10.1002/adfm.202315040. Epub 2024 May 13.
Three-dimensional (3D) bioprinting using photocrosslinkable hydrogels has gained considerable attention due to its versatility in various applications, including tissue engineering and drug delivery. Egg White (EW) is an organic biomaterial with excellent potential in tissue engineering. It provides abundant proteins, along with biocompatibility, bioactivity, adjustable mechanical properties, and intrinsic antiviral and antibacterial features. Here, we have developed a photocrosslinkable hydrogel derived from EW through methacryloyl modification, resulting in Egg White methacryloyl (EWMA). Upon exposure to UV light, synthesized EWMA becomes crosslinked, creating hydrogels with remarkable bioactivity. These hydrogels offer adjustable mechanical and physical properties compatible with most current bioprinters. The EWMA hydrogels closely resemble the native extracellular matrix (ECM) due to cell-binding and matrix metalloproteinase-responsive motifs inherent in EW. In addition, EWMA promotes cell growth and proliferation in 3D cultures. It facilitates vascularization when investigated with human umbilical vein endothelial cells (HUVECs), making it an attractive replacement for engineering hemocompatible vascular grafts and biomedical implants. In summary, the EWMA matrix enables the biofabrication of various living constructs. This breakthrough enhances the development of physiologically relevant 3D models and opens many opportunities in regenerative medicine.
使用可光交联水凝胶的三维(3D)生物打印因其在包括组织工程和药物递送在内的各种应用中的多功能性而备受关注。蛋清(EW)是一种在组织工程中具有巨大潜力的有机生物材料。它提供丰富的蛋白质,同时具有生物相容性、生物活性、可调节的机械性能以及固有的抗病毒和抗菌特性。在此,我们通过甲基丙烯酰化修饰开发了一种源自蛋清的可光交联水凝胶,即甲基丙烯酰化蛋清(EWMA)。在紫外光照射下,合成的EWMA发生交联,形成具有显著生物活性的水凝胶。这些水凝胶具有与大多数当前生物打印机兼容的可调节机械和物理性能。由于蛋清中固有的细胞结合和基质金属蛋白酶响应基序,EWMA水凝胶与天然细胞外基质(ECM)非常相似。此外,EWMA在三维培养中促进细胞生长和增殖。在用人类脐静脉内皮细胞(HUVECs)进行研究时,它有助于血管化,使其成为工程化血液相容性血管移植物和生物医学植入物的有吸引力的替代品。总之,EWMA基质能够生物制造各种有生命的构建体。这一突破促进了生理相关三维模型的发展,并为再生医学带来了许多机遇。